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Abstract 

 

This research investigates how aggregation is currently conducted for simulation of large 

systems.  The purpose is to examine how to achieve suitable aggregation in the 

simulation of large systems.  More specifically, investigating how to accurately aggregate 

hierarchical lower-level (higher resolution) models into the next higher-level in order to 

reduce the complexity of the overall simulation model.  The focus is on the exploration of 

the different aggregation techniques for hierarchical lower-level (higher resolution) 

models into the next higher-level.  We develop aggregation procedures between two 

simulation levels (e.g., aggregation of engagement level models into a mission level 

model) to address how much and what information needs to pass from the high-resolution 

to the low-resolution model in order to preserve statistical fidelity.  

We present a mathematical representation of the simulation model based on 

network theory and procedures for simulation aggregation that are logical and executable.  

This research examines the effectiveness of several statistical techniques, to include 

regression and three types of artificial neural networks, as an aggregation technique in 

predicting outputs of the lower-level model and evaluating its effects as an input into the 

next higher-level model.  The proposed process is a collection of various conventional 

statistical and aggregation techniques, to include one novel concept and extensions to the 

regression and neural network methods, which are compared to the truth simulation 

model, where the truth model is when actual lower-level model outputs are used as a 

direct input into the next higher-level model.  The aggregation methodology developed in 

this research provides an analytic foundation that formally defines the necessary steps 

essential in appropriately and effectively simulating large hierarchical systems.   
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METAMODELING TECHNIQUES TO AID IN THE AGGREGATION PROCESS 

OF LARGE HIERARCHICAL SIMULATION MODELS 

 

I.  Introduction 

1.1 General Discussion 

The purpose of this research is to investigate how aggregation is/could be conducted in 

modeling and simulation (M&S) with the intent of improving the process by developing a 

well-defined set of procedures to aid in the aggregation process.  Specifically, 

investigating the issue of how to properly (with the intent of providing rigorous 

theoretical/mathematical support) aggregate hierarchical lower-level models into the next 

higher-level (e.g., aggregation of engagement level models into the mission level model) 

as depicted in Figure 1 (i.e., how should the output from a lower-level model be 

aggregated and used as an input to a higher-level model?).  Due to the enormity of the 

problem, the scope of the research will mainly focus on investigating the aggregation 

between two adjacent levels of the hierarchy.  The research on aggregation will not be 

limited between any levels in order to still gain insight from the other levels of the 

hierarchical model aggregation techniques.  The application of the developed model 

aggregation methodology will be applied to real-world military simulation models in the 

area of flying training and the current Air Force aircraft sortie generation process. 

 

 
Figure 1 - Combat Modeling Hierarchy [Miller, 2006] 
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The hierarchical combat simulation pyramid consists of four levels ranging from 

the most detailed (engineering) to most aggregated (campaign) level simulations, as 

depicted in Figure 1.  At the engineering level, often the concern is modeling system 

performance and is very detailed.  The engagement level usually represents engagements 

between weapons and targets ranging from one-on-one to few-on-few types of scenarios.  

The mission level models simulate multiple air platforms engaging multiple targets.  Here 

the aggregation is fairly moderate and is applied to a few of the entities and processes.  At 

the top of the hierarchy is the campaign level where usually the focus is on the entire war 

and the air engagement is but one of the aspects of the entire campaign [Sisti, 1998].  Due 

to the enormity of the scope covered at the campaign level, the entities and process are 

very highly aggregated with very low resolution in order for the model to run in an 

acceptable time frame, at the cost of losing model fidelity and (typically) accuracy.  The 

typical aggregation performed at this level is through replacement of individual entity and 

process activities with “average” performances.  As more and more models are 

aggregated together (e.g., mission level model outputs from EADSIM, SUPRESSOR, 

SEAS, etc., are used as input to campaign level models such as THUNDER and CFAM) 

the level of detail has to be reduced in order to avoid the creation of monolithic models 

that could virtually run forever.  Thus, the questions of as to how and what elements 

can/should be combined or aggregated arise. 

 Models at specific levels are developed for specific purposes and have 

corresponding levels of fidelity and resolution associated with them.  In practice, high-

resolution simulations for modeling short-term and small scale activities are located at the 

lower-level of the hierarchy.  At the very top of the hierarchy, the collective higher-

resolution model could, in theory, be implemented numerous times during a full scale 

simulation of a campaign model.  In order for the campaign model to run in a reasonable 

time, some sort of aggregation and/or calibration needs to be performed for the set of 

high-resolution modules [Guo et al., 1998].  Table 1, obtained from Appendix E of Davis 

et al. [1997] best summarizes the different details at the different levels of the modeling 

hierarchy.   
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Table 1 - Combat Model Hierarchy Details [Davis et al., 1997, Table E.1] 
Level of 
Model Scope Level of Detail Time Span Outputs Illustrative Uses Examples

Campaign Joint and 
combined Highly aggregated Days to weeks

Campaign dynamics 
(e.g., force 

drawdowns and 
movement) 

Evaluation of force 
structures, strategies, 

and balances; 
wargaming 

CEM, 
TACWAR, 
Thunder, 

JICM 

Mission 
Multi-platform, 
multi-tasking 
force package 

Moderate 
aggregation, with 

some entities 

Minutes to 
hours 

Mission effectiveness 
(e.g., exchange 

ratios) 

Evaluation of 
alternative force-

employment concepts, 
forces, and systems; 

wargaming 

 
Eagle, 

Suppressor, 
EADSIM, 

NSS 

Engagement One to a few 
friendly entities 

Individual entities, 
some detailed 
subsystems 

Seconds to 
minutes 

System effectiveness 
(e.g., probability of 

kill) 

Evaluation of 
alternative tactics and 

systems; training 

Janus, 
Brawler, 
ESAMS 

Engineering 
Single weapon 

systems and 
components 

Detailed, down to 
piece parts, plus 

physics 

Subseconds to 
seconds 

Measures of system 
performance 

Design and evaluation 
of subsystems and 
subsystems; test 

support 

Many, 
throughout 

R&D centers

  

There are several existing literatures on model aggregation, especially in the area 

of economics and database management, but as far as simulation model aggregation none 

have specifically established any rigorous mathematical process of aggregation that is 

comprehensible and executable.  According to the National Research Council study done 

for the Navy and Marine Corps, “no one today knows how to carry out the vision of new 

think" in the combat modeling arena [Davis et al., 1997].  This “new think” is in 

reference to the idea of integrating and aggregating between hierarchical models as 

depicted in Figure 3.  Figure 2 represents the “old think” where the scope of 

communication between the model hierarchies is limited.  Part of the problem stems from 

the fact that models are not initially built with cross-calibration in mind and integrating 

with other models for eventual aggregation becomes extremely complicated [Davis et al., 

1997].   

 In addition, there are organizational problems in the construction of the models, 

often owned by different organizations, in that models are designed independently and 

linkages between models are often made up, and if close to reality are often flawed, 

which eventually results in erroneous results and integration problems.  The idea of “new 

think” envisions that different hierarchical models are designed with different models in 

mind from the onset of model building, in terms of within and between model levels.  

Unfortunately, the idea of “new think” is more difficult to put into practice which is a 

subject of serious theoretical research [Davis et al., 1997]. 
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Figure 2 - "Old Think" on Model Families [Davis et al., 1997, Fig 6.1] 

 
 

 
Figure 3 - "New Think": Integrated Hierarchical Families of Model [Davis et al., 1997, Fig 6.2] 

 
 It is often the case in practice that an aggregated model which re-uses higher 

resolution lower-level models may result in a more detailed system model than the 

simulation objective.  With respect to managing the simulation goals, simulating such a 

gigantic system results in a waste of simulation time and money.  These simulation costs, 

however, can be reduced through the use of abstract modeling techniques and thereby 

reducing the complexity of the higher-level model.  This is especially true when the 

higher-resolution model is but a subset of the more complex, higher-level model.  

Abstraction techniques can reduce the lower-level model complexity by removing, 

combining, or approximating model parameters or variables at a less detailed level and 

thereby reducing the complexity of the higher-level model without greatly influencing the 

simulation results. 

 The modeling and simulation of monolithic and complex models are most of the 

time themselves computationally intricate and it is often infeasible to imitate every aspect 

of the system being modeled through simulation.  A method to abate the intricacy is by 
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means of hierarchical decomposition of the complex simulation model, i.e., the whole 

system is divided hierarchically into simpler modules, as is commonly the case in combat 

models, each with different simulation resolution [Guo et al., 1998].  The simpler 

modules can contain quite a lot of details (high-resolution) or minimal details (low-

resolution); its simplicity is in terms of the limited focus of the module (e.g., modeling 

one weapon system at a time, versus several weapons interacting simultaneously).  

Frequently, high-resolution models simulate a very extensive set of information of all 

possible events and the details of each entity and processes are finer and are usually very 

time consuming.  On the other hand, low-resolution modules usually carry out collective 

assessment of the different intricacies in the module; that is, find out what are the most 

likely results “on the average.” 

Axtell [1992] describes model aggregation as the decrease in the dimensionality 

of a simulation model through the fusion of model variables into composite variables.  

Aggregation simplifies a more complex system in some specific way which enables the 

users to get a better grasp on the system at hand.  However, model aggregation tends to 

produce information loss on the original variables.  In addition, the aggregate model will 

be but an imperfect version of the original non-aggregated system.  Although the 

abstracted model is usually only able to estimate near correct predictions, it is 

nevertheless valuable by virtue of its simplicity and execution speed [Axtell, 1992]. 

Model aggregation often involves a transformation of data or information.  For 

instance, at a lower-level model, individual aircraft sortie durations might be of interest 

while in the aggregated model (higher-level model), the concern might be the total fleet 

sortie duration.  In this case, the input into the aggregated model might just be the 

summation of the individual aircraft durations, therefore eliminating the need to model 

each individual aircraft.  This leads to the question of how should data or information be 

transformed in the aggregated model?   

 The most common form of data and information transformation into an 

aggregated model is the use of the Sum and/ or Average operators, along with First, Last, 

Mode, Minimum, and Maximum [Oracle, 2006; Zeigler et al., 2000; Cassandras et al., 

2000].  Typically, high-resolution models of simulated systems create very disparate 
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responses, especially with different levels of input parameters, such that aggregating all 

of these into one average may not be appropriate.  For example, in the simulation of 

flying training discussed in Chapter 4, it does not make any sense to take the average (or 

summation) of the different time in system outputs for the different specific pilot types.  

It would make more sense to group the outputs according to the same set of pilot types 

first before aggregating the time in system output, which is the main idea for the 

application of Adaptive Resonance Theory (ART) 2 [Carpenter and Grossberg, 1987b; 

1991] which is briefly discussed later.   

 Axtell [1992] enumerates several reasons why there is a need for aggregation in 

model development, some of which are listed below:  

 lack of sufficient data for estimation and/or validation of a high-resolution 
model; 

 analysis of the full lower-level system is difficult due to inadequate 
understanding of the system;  

 sometimes the “details” of the higher-resolution model may be unnecessary 
or irrelevant to the specific question at hand; 

 real-time solutions for performing ‘what if’ analyses, may not be feasible with 
lower-level detailed models, thus alternatively needing an immediate 
simplified version; 

 lack of resources (usually due to budget constraints) to formulate and solve 
the highly-detailed model; 

 large extent of the information obtained from the highly-detailed simulations 
could make the evaluation so enormous and  insignificant that sometimes all 
that is really needed is the “simpler” answer. 

  

 Typically, a number of these reasons may occur concurrently and serve as the 

underpinning for the use of an aggregate model.  Aggregation can be used as a tool for 

coping with complexity and it can be valuable in two separate ways.  First of all, 

aggregation procedures can significantly decrease the size of a complex system and in so 

doing makes a system comprehensible to analysts where he/she can develop some 

intelligent intuitions.  It is the ability of aggregation to minimize the size or degree of 

difficulty of a complex system which makes it valuable in the analysis of large-scale 

systems.  The other way in which aggregation exhibits its effectiveness in application to 
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highly complex systems is by filtering out the most significant features of the system 

instead of just truncating [Axtell, 1992]. 

 The lower-level models (generally a high-resolution model) produce output data 

which are then taken as input for the next higher-level model (typically a lower-

resolution model), as depicted in Figure 4 [Cassandras et al., 2000].  Given an input 

vector u, along with the randomness ω in the model, the high-resolution model produces 

a sample path h(u, ω).  Of course, the interest cannot lie with one replication, so running 

several replications becomes important.  Thus, from the multiple replications, the interest 

is in E{h(u, ω)}.  From this concept, it is typical in hierarchical simulation to use the 

high-resolution output E{h(u, ω)} as an input to the lower-resolution model.  According 

to Cassandras et al. [2000] the practice of lumping the grand mean into one input is 

unacceptable since this conceals the significant features of the high-resolution output.  

This is due to the fact that significant statistical information (i.e., statistical fidelity) is 

concealed by this process, which could result in possible erroneous solutions.  This is 

especially true for different sets of input into the higher-level model.  These authors 

suggest clustering (grouping) the different higher-resolution model input first (by means 

of ART 2 neural network, originally developed by Carpenter and Grossberg in the 

1980’s) and take the corresponding output as one group, then take the group’s expected 

value separately as the lower-resolution model’s input, as depicted in Figure 5.  In order 

to accommodate this concept, the input output from the lower to the higher level will be 

grouped according to scenarios since scenarios are distinguished from each other based 

on the value of their input. 

 

 
Figure 4 - Passing a simple average to the lower-resolution model [Cassandras et al., 2000, Fig 2] 
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Figure 5 - Passing several averages to the lower-resolution model, one for each cluster  

[Cassandras et al., 2000, Fig 3] 
 
  

 The concern here is to do the systematic “lumping” without waiving statistical 

fidelity.  What is meant by “statistical fidelity” is the statistical information generated at 

the low-level, high-resolution simulation model should be maintained precisely at the 

next higher-level models.  Parallel simulation has been used in the field as a way to 

lessen the burden of the complexity of simulating macromodels.  However, in general, it 

is quite complex to run a simulation model completely in parallel for its entirety 

especially if several of its parts flow in a sequential manner [Guo et al., 1998]. 

 Therefore, a systematic design and analysis framework is definitely desirable in 

order to establish guidelines as to how to properly aggregate models between the 

simulation levels.  In this research, investigation into the workings of such a framework is 

explored.  The main effort has been directed at developing an aggregation methodology 

between two simulation levels such that the question of how much and what information 

needs to pass from the high-resolution to the low-resolution model in order to preserve 

statistical fidelity can be answered.  The proposed aggregation methodology is further 

discussed in detail in Chapter 3. 

1.2 Motivation 

Today, simulation is a very popular technique for the analysis and/or design of existing or 

proposed intricate system structures.  The attraction to this technique is mainly due to its 

flexibility and to its ability to model real-world systems in some great detail, which, in 

turn, leads simulation to be used as a tool for decision support in managing and 
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controlling the underlying complex system.  Although simulation models often entail less 

restrictive assumptions than mathematical models when symbolizing intricate, dynamic 

systems, the simulation models themselves are often complicated and typically of high 

dimensionality.  Using an appropriately built metamodel, a quick analysis can be formed 

while retaining the statistical fidelity of the simulation model.  Thus, a structured 

methodology is needed to rapidly and efficiently explore the more complex simulation 

model.   

1.3 Problem Statement 

The modeling and simulation community need a coherent and systematic manner of 

aggregating large hierarchical simulation models.  This research will facilitate methods 

on determining what part of the hierarchical simulation can be aggregated and at the same 

time provide ideas on the different aggregation techniques that can be implemented to aid 

in building statistically sound simulation model aggregation. 

1.4 Proposed Research Contributions 

1.4.1 Primary Research Contributions 

 Big picture view of the aggregation process for hierarchical simulation models 
with a well-defined mathematical framework for passing data/information 
from one level of fidelity to the next; 

 
 Describe general steps involved with aggregating of processes and entities;  

 
 Build quantifiable measures of how well the aggregation process captures 

desired model outputs without sacrificing accuracy. 
 

1.4.2 Secondary Research Contributions 

 Determine the process of passing means and/or distributions to the next higher 
level; 
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 Determine what aggregation works best for specific applications of combat 
models and other types of models; 

 
 Demonstrate different techniques of aggregation and/or combining known 

techniques into one concise process. 

1.5 Organization of Dissertation 

This dissertation is organized into the following six chapters: Introduction, Literature 

Review, Methodology, Flying Training Model, Results and Analysis, ALS Sortie 

Generation Model, Results and Analysis, and Conclusions and Recommendations.  A 

brief description of each follows. 

 Chapter 1: Introduction – This chapter provides an introduction to the problem of 

simulation model aggregation, motivation for this research, description of the problem 

statement and the proposed research contributions.   

Chapter 2: Literature Review – This chapter provides a literature review on past 

and current practices in modeling large hierarchical simulations.  Along with these 

practices, different possible statistical techniques that can be used in simulation model 

aggregation are also investigated.   

Chapter 3:  Methodology – This chapter describes the proposed aggregation 

methodology for large hierarchical simulation models and the various statistical 

techniques that are used in the research.   

Chapter 4:  Flying Training Model, Results and Analysis – The first application of 

a real world simulation model is described.  Results and analysis on the application of the 

different aggregation techniques as implemented to the FTM is described. 

Chapter 5: ALS Sortie Generation Model, Results and Analysis – The second 

application of a real world simulation model is described.  Results and analysis on the 

application of the different aggregation techniques as implemented to the ASGM is 

described. 

Chapter 6: Contributions and Future Research – Contributions to the field of 

modeling and simulation and recommendations for future research are provided.
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II. Literature Review 

2.1 Overview 

This chapter is built upon the review of the different statistical techniques that can be 

utilized for aggregation in modeling and simulation as depicted in Figure 6.  The 

organization of this chapter is as follows.  Section 2.2 provides a background and 

discussion on aggregation as it pertains to modeling and simulation.  In Section 2.3 the 

pre-processing of model input along with the different feature selection/extraction 

techniques are discussed.  In Section 2.4 the different variance reduction techniques that 

will be used in the aggregation process are reviewed.  The different abstraction 

techniques that are currently used in the field, which include aggregation, are detailed in 

Section 2.5.  Finally, Section 2.6 provides a brief description of the software used in the 

application portion of this dissertation.   
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2.2 Background 

It is sometimes unavoidable to build models with appropriate multifarious complexity in 

order to capture certain phenomena.  For a lot of researchers, capturing the correct 

intricacy continues to be an ongoing research issue.  But, how is complexity defined?  

According to Axtell [1992], a large-scale system does not make a system complex; 

rather, the greater number of interactions in a large-scale system makes it a complex 

system.  Large-scale systems are usually characterized by the existence of several 

variables, both dependent and independent.  Also, according to the online Merriam-

Webster dictionary [2007], complexity is “the quality or state of being complex.”  So, 

what does it mean to be complex?  Again, according to the Merriam-Webster online 

dictionary, it is something that is “hard to separate, analyze, or solve,” attributed most 

likely to being “composed of two or more parts.”  Accordingly, Axtell [1992] proposes 

that a tool that can be used for dealing with complexity is aggregation, which is a type of 

model simplification technique.  As defined in the Department of Defense Modeling and 

Simulation Master Plan [1995], aggregation is “the ability to group entities while 

preserving the collective effects of entity behavior and interaction while grouped.” 

Recommended aggregation methodologies are based on the scale of interest.  

Decision makers need reliable and well-synthesized information about the environment 

without getting lost in the detail.  A “pyramid” or “upward” approach in combat 

modeling typically starts with a very complex model to capture very detailed aspects of a 

system all the way to a highly aggregated model representation.  Complexity typically 

diminishes as the spatial and temporal scales increase.  Usually, the complexity of 

different models may be easily grasped, but it is more often than not complicated to 

characterize it in mathematical representations without creating some simpler 

assumptions.  It has been abundantly shown in literature that increasing model 

complexity does not in effect imply model accuracy increase [Pachepsky et al., 2006].  

Several modeling application of battlefield simulations depict different model 

complexities at the different levels [Sisti and Farr, 1998]. 

Our proposed aggregation process is best summarized in Figure 6.  There is no 

universal method to solve every problem and the process prescribed here is just that, one 
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way to properly capture the model aggregation process.  The analyst must pick and 

choose based on the advantages and disadvantages of particular methods.  In most cases, 

the different statistical procedures selected in this research have been extensively used 

and explored successfully in the field, but the combination of these different techniques 

into one continuous process for model aggregation purposes is what will make the 

proposed process comprehensible and executable.   

2.3 Pre-processing and Feature Selection/Feature Extraction 

We know from our past experiences that pattern recognition as carried out by humans is 

usually built on a very few of the most important features.  An example of such is the 

classification of the type of crop in the field merely by its color or shape.  By the same 

token, a similar task is attempted in constructing techniques for automatic classification 

or prediction in any pattern recognition problem based only on a few important features 

typifying the class membership or prediction.  In the context of using artificial neural 

network (ANN) as the metamodel of the simulation model, the individual inputs from the 

higher-resolution models into the lower-resolution model are considered as the feature set 

in this case.  But before representing the entire feature set into the parameterized neural 

network function, it is often beneficial to perform an initial pre-processing stage before 

hand where the data is transformed into some new representation.  The pre-processing 

stage may involve a simple linear rescaling of the data such as normalization or 

standardization, and/or a more complex transformation process of dimensionality 

reduction such as feature selection or extraction [Bishop, 1995].  Such pre-processing 

may lead to a much improved ANN performance.   

Although there is no theoretical rationalization for restricting the amount of 

features to include in the model, often in practice after a certain point, increasing the 

number of features can actually lead to a decrease in performance of the classification 

system.  The key reason for limiting the features to the absolute minimum is to curb the 

phenomenon, coined by Richard Bellman in 1961, as the “curse of dimensionality” 

[Devijver and Kittler, 1982].  According to Bishop [1995] there are two main types of 

pattern recognition tasks: (1) classification problems where the outputs are the estimates 
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of probability of class membership and (2) prediction problems, in which the continuous 

variable outputs of the network correspond to the expected value of the model at a given 

point in input-space, both of which are particular function approximations.  The pattern 

recognition task as a metamodeling tool for this research will be on prediction problems 

since these are the most typical type encountered in simulation. 

Although increasing the quantity is never an exact substitute for quality, typical 

measures of abating this dilemma is through the integration of prior knowledge about the 

problem and incorporating all the features that could perhaps present useful information.  

Often, an increase in the number of features produces an even more intricate classifier 

structure.  In addition, input data with redundant or irrelevant features can cause 

damaging effect on the accuracy of the classifier or predictor.  The points specified above 

substantiate the reason for focusing our attention to the feature extraction/selection 

techniques [Devijver and Kittler, 1982]. 

Feature extraction techniques, such as Principal Component Analysis (PCA) and 

Common Factor Analysis (CFA), attempts to extract a set of r features, where each r 

features is typically a linear combination of all of the initial d features, r ≤ d.  PCA is a 

mathematical procedure that seeks to explain the underlying multivariate structure of the 

data and transforms a number of (possibly) correlated features into a (smaller) number of 

uncorrelated features called principal components [Jackson, 1991:4].  CFA is another 

type of factor analysis which finds the smallest number of factors which can explain the 

common variance (correlation) of a set of variables, while the more common PCA in its 

full form attempts to find the set of factors which can account for all the common and 

unique variance in a set of variables [Dillon and Goldstein, 1984:55-56]. 

Unlike feature selection, feature extraction does not reduce the complexity of the 

means for data acquisition.  Feature selection techniques, such as using saliency measures 

[Ruck et al., 1990], [Belue, 1992], [Steppe and Bauer, 1996] and signal-to-noise ratio 

(SNR) [Bauer et al., 2000], actually reduces the number of features required to a subset 

of the original input features and disposing the irrelevant and/or redundant features 

thereby only retaining the “effective” features [Haykin, 1999:396].  Both feature 

selection and feature extraction techniques lessen the complexity of building the 
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prediction (classification) system and can be very helpful in attaining an accurate 

performance of the pattern recognition system [Devijver and Kittler, 1982].   

Similarly in the statistical world of regression, this pre-processing stage is known 

as factor screening.  Factor screening is used as a means to identify a reduced subset of 

input factors (from a larger set of candidate factors) that significantly contribute to the 

observed variability in the output of a simulation model.  Typically, simulation models 

are complex and contain several factors.  The amount of input factors (d) determines if 

factor screening is required, usually when number of available runs (n) is less than d (i.e., 

n ≤ d and d ≥ 20).  If the number of input factors is fairly small, factor screening might be 

unnecessary.  However, when the size of the input factors is large, the use of factor 

screening becomes necessary in order to determine the subset of factors within the 

simulation model which are most significant.  Screening is generally necessary in the 

initial phase of complicated simulation studies.  The selection of which screening 

technique to use highly depends on the number of variables in the model.  Additionally, 

the amount of model runs available (budget), the knowledge of the analyst in both the 

technique employed and how much is known about the underlying model are all 

important issues to be considered.  Some of the alternative examples of factor screening 

methods that have been recently developed, and are more appropriate for cases where the 

number of candidate factors is large, are: (1) supersaturated designs [Mauro, 1986], 

[Westfall et al., 1998], [Trocine and Malone, 2000], [Trocine and Malone, 2001], [Allen 

and Bernshteyn, 2003], [Li and Lin, 2003], [Holcomb et al., 2005], and [Gilmour, 2006]; 

(2) iterated fractional factorial designs [Saltelli et al., 1993; 1995], [Hajas, 1998], 

[Trocine and Malone, 2000], and [Melnyk et al., 2006]; (3) sequential bifurcation 

[Bettonvil and Kleijnen, 1996], [Trocine and Malone, 2001], and [Kleijnen et al., 2003]; 

(4) controlled sequential bifurcation [Wan et al., 2003], [Sanchez et al., 2005], and [Shen 

and Wan, 2005]; and (5) Trocine screening procedure [Trocine and Malone, 2001]. 
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2.4 Variance Reduction Techniques 

Mathematical strategies leading to efficiency increase in simulation models and thereby 

increasing precision, although not always associated with variance reduction, are called 

variance reduction techniques (VRT) [Law, 2006].  The implementation of some type of 

VRT can prove to be a very valuable tool (and should be applied to model aggregation) in 

reducing the variance of simulation-generated estimators.  It is recommended that an 

initial pilot run be performed to assess the value of any VRT being considered [Law, 

2006].  Usually, VRT can greatly reduce simulation run lengths and still give accurate 

estimates of the desired outputs.  In addition, the use of VRT can produce smaller 

confidence intervals for the same number of simulation replications.  Due to the 

monolithic tendencies of aggregated models, engaging some type of VRT may greatly 

reduce the required number of simulation runs which tend to be costly in terms of time 

and money.   

Variance reduction techniques were first developed in the days of computer 

infancy for applications in Monte Carlo simulations or distribution sampling [Kleijnen, 

1977; Law, 2006].  In order for simulationists to use these techniques in their field of 

simulation, modifications to the VRT were required because of the autocorrelation 

present in simulated observations and the intricate relationships between certain portions 

of the stochastic model and simulated output [Donohue, 1995].  Fishman [1974] 

investigated the use of common random numbers (CRN), and antithetic variates (AV) in 

his simulation study.  He experimented and compared the effects of no induced 

correlation, inducing negative correlation (i.e., AV), inducing positive correlation (i.e., 

CRN), and a combination of the first three options.  The most commonly used variance 

reduction techniques in the field are CRN (also known as correlated sampling), antithetic 

variates, and control variates (CV; also known as regression sampling) [Kleijnen, 1977]. 

The variance reduction technique of common random numbers is only applicable 

when two or more alternative system configurations are being compared.  Although the 

simplest form of VRT, CRN is considered to be the most common and useful [Law, 

2006].  The main use for CRN is when comparing different configurations it allows the 

analyst to truly compare variation in the systems due to their configuration rather than the 
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differences in the experimental conditions.  To properly implement CRN, it should use 

the same random number stream for a specific class of events from one configuration to 

the next and should be properly synchronized, to induce positive correlations and reduce 

the variances of certain output statistics.  Unfortunately, CRN is not guaranteed to always 

work (i.e., it may not always reduce the variance); and if it does work, there is no 

knowledge of how much reduction can be gained [Law, 2006].  Since the aggregation of 

the same system is what is being investigated, the use of CRN is not applicable at this 

time. 

The variance reduction technique of antithetic variates is applicable when 

simulating a single system.  Antithetic variates originated in the 1950s by Hammersley 

and Morton.  It uses antithetic pairs of random numbers by using complementary random 

number pairs in order to induce negative correlations between runs that lead to reduced 

variability of certain output statistics [Donohue, 1995].  For example, for every sample 

path taken, to take its antithetic, i.e., given a path {U1,...,UM} also take {1-U1,...,1-UM}.  

The AV pairs, from one replication and its complement from the next replication, must be 

properly synchronized in order for AV to work properly [Law, 2006].  Most of the same 

techniques used in CRN for synchronizing random numbers can be used for AV such as: 

dedication of random number streams for each class of events and the use of inverse-

transform method for variate generation wherever possible.  Unfortunately, CRN is also 

not guaranteed to always work. 

Another variance reduction technique that is used in simulation modeling is 

control variates.  This VRT is also applicable when simulating a single system.  Unlike 

the CRN and AV, the use of control variates does not affect the random number stream 

assignments; but like CRN and AV, CV tries to take advantage of correlation between 

random variables to attain some type of variance reduction [Donohue, 1995; Law, 2006].  

The fundamental idea for using CVs is to choose one or more effective controls that 

greatly influence the desired outputs.  We wish to identify random variables whose 

expectations are known and should be strongly correlated with the simulated output 

variable of interest, in order to attain a lot of information about the output variable of 

interest and make adjustments to it [Law, 2006].  Choosing an effective control can prove 
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to be quite difficult and requires significant familiarization of the model by the 

analyst/simulationist.  It is especially beneficial to run a pilot run to accomplish the 

control variate selection and use some type of control selection technique to determine 

the subset of “good” controls [Bauer and Wilson, 1993].  In addition, performance 

deterioration is possible when too many controls are selected [Nelson, 1987].   

Although a very powerful tool when integrated into a simulation in gaining 

precision efficiency even when implemented alone, it has been found that a combination 

of these VRT methods can prove to be an even more powerful tool.  Schruben and 

Margolin [1978] utilized a combination of antithetic and common random number 

streams as a correlation-induction strategy based on the concept of blocking to improve 

their metamodel estimates.  Yang and Nelson [1991] used a combination of CRN and CV 

for their multiple-comparison procedures.  With the incorporation of the combination 

VRT, they were able to get a higher probability of finding if differences existed between 

models.  In Tew and Wilson [1994], they incorporated control variates along with 

Schruben and Margolin’s correlation-induction strategies.  Yang and Liou [1996] 

combined antithetic variates and control variates to estimate the mean response in a 

stochastic simulation experiment.  They applied AV to produce the CV across paired 

replications and showed that the induced variance is smaller than using CV alone.  Thus, 

at every possible opportunity, VRT should be implemented (and learned by the analyst) 

since it can yield a more effective simulation, typically at a cost that is relatively minor as 

compared to the total cost of the simulation [Nelson, 1990]. 

2.5 Model Abstraction 

Benjamin et al. [1998] emphasize the fact that models of real world systems are not only 

abstracted at some level, but are also highly reliant on the simulationist’s perspective.  

This level of abstraction of a model regulates the level of detail in the model where the 

quantity of detail is reduced with more model abstraction.  Benjamin et al. [1998] 

differentiate between abstraction and perspective in a model by its detail (level of 

information) and its relevance from the simulationist’s and/or decision maker’s 

viewpoint, respectively.  This relevance is normally based on what the decision maker 
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deems to be important in order to arrive at the goals of the simulation, which leads to 

different flavors in the model abstraction process.   

 Important concerns in the abstraction process involve determining the variables or 

parameters that can be abstracted away for a given simulation objective and applying the 

appropriate abstraction method to replace those parameters.  One way to address both the 

simulation time and development cost issues is to employ model abstraction techniques 

[Sisti and Farr, 1998].  It seems reasonable to assume that model abstraction techniques 

can lessen simulation time by reducing model complexity.  Thinking of reducing model 

complexity in reverse, we need to determine what part of the system being modeled 

needs to be modeled in detail.  The answer according to Sisti [2006] is, “those elements 

which provide the greatest increases in the validity of the simulation results, while 

imposing the smallest degradation of performance of that simulation.”   

 While being an excellent tool to reduce simulation costs, true model abstraction 

cannot be attained by simply removing complexity from an existing model.  Model 

abstraction techniques must preserve information that is relevant to determining the 

performance of a system.  In addition, information that has been removed from a complex 

model must be properly replaced or represented in order for the model to stay within the 

premise of the simulation goals.  The question now is how does one measure complexity?  

Van Lienden [1998] provides nine different types of complexity measures with 

descriptions of each type as depicted in Table 2.   

Table 2 - Types of Model Complexity [Van Lienden, 1998] 
Complexity Type Example Indicator 

Spatial Number of spatial variables and the degree to which they interact 
Temporal Number of time steps incorporated into the model 
Input Amount of input required to run the model 
Uncertainty Number of stochastic variables incorporated into the model 
Programming/Modeling Length of the model’s programming/modeling code 
Interface Complexity of the user’s interaction with the model 
Run-time Amount of time required to run the model 
Interpretation Amount of time required to interpret the model results 
Calibration Amount of data needed to calibrate the model 

 
 

Although Van Lienden’s thesis pertains to linear programming with application to 

the Northern California water system, his concepts of complexity measures might prove 



 20

beneficial to modeling and simulation and possibly aid in the aggregation process.  Of the 

nine suggested complexity types, only three:  spatial, runtime, and interpretation were 

applicable to his research and are discussed in his thesis.  Although, spatial complexity is 

discussed in much more detail than the other two considered complexity types.  The 

measure of spatial complexity is in terms of summing the number of inflow links, 

reservoirs, and demand regions, which are also used as the cluster for spatial aggregation.  

Van Lienden [1998] also mentions the fact that the input and calibration complexity 

measures should be positively correlated to spatial complexity as they are both likely to 

increase with spatial complexity and vice versa.  When all 80 variables are represented in 

the model, he refers to this representation as the full model (model A), see Table 3.  The 

other intermediate models are at different levels of aggregation, i.e., Model B-Local 

Aggregation by Regions, Model C-Aggregation by River System, Model D-Aggregation 

of Eastern and Western Sacramento Valley, Model E-Aggregation by Group Types and 

Model F is the fully aggregated model.  

Table 3 - Test Case Spatial Complexities [Van Lienden, 1998] 
Case # Inflow Links # Reservoirs # Demand Regions Spatial Complexity 

A 40 25 15 80 
B 28 19 13 61 
C 17 13 12 42 
D 12 7 7 26 
E 4 2 2 8 
F 3 1 1 5 

 

The model run-time complexity in Van Lienden’s thesis isn’t measured with the 

typical length of processing time a model is run in a computer.  Instead, run-time 

complexity is measured in the context of linear programming as to the number of 

decisions required of the optimization model and the number of iterations the model takes 

to reach a solution.  With the continuing advent of faster computers, model run-time, in 

terms of processing times, is not much of a realistic concern for selecting models of a 

respectable size.  However, in monolithic combat modeling scenarios, especially at the 

higher-levels, model run-time can still be a major factor for consideration due to the 

sensitive nature of war.  The last complexity type Van Lienden discusses is interpretation 

time.  This is the quantity of time required to evaluate the model results and understand 
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their significance to the overall goal of the model.  Typically, the evaluation time is 

lessened at the higher-level model; however, several assumptions must be stated up front, 

especially for the model aspects that have been abstracted away. 

 The nine different complexity types may not be all relevant to our research either, 

such as calibration and interpretation complexities, but certainly spatial and temporal 

might be worth delving into.  Temporal complexity is already an aspect that is used in the 

simulation of campaign level models.  Of course, each complexity type will be 

investigated for applicability into the area of combat modeling, specifically in CID, and 

abandoned if deemed not pertinent.  Applicable complexity types from Van Lienden 

[1998] and a similar grouping of “resolution aspects” described in Davis et al. [1997] 

(see Figure 7) that are appropriate for combat modeling will be compiled for use in our 

research. 

Resolution

Entity Attribute Logical
dependency

Process Spatial Temporal

Resolution

Entity Attribute Logical
dependency

Process Spatial Temporal

 
Figure 7 - Aspects of Resolution [Davis et al., 1997, Fig E.1] 

 

In terms of spatial complexity as will be applied to our research, we envision its 

application to model aggregation as depicted in Figure 8, where a full model is built 

including all the outputs from different lower-level models and use those as inputs into 

the higher-level model.  As the subsystems (components) are progressively aggregated its 

corresponding spatial complexity will also decrease.  Subsystem aggregation can occur 

over one or more aspects of resolution. 
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Figure 8 - Spatial Complexity 

 
Now how is the “best” level of spatial complexity determined?  This part is 

depicted in Figure 9.  From Figure 8, we consider the higher-level model output with the 

full model as truth.  It is assumed in Van Lienden’s thesis that, given adequate data and 

information, the most complex formulation (full model) will be the most accurate (truth) 

representation of the desired output and therefore can be used as a benchmark for 

evaluating other formulations.  It makes perfect sense that a certain amount of 

aggregation is acceptable with small inaccuracy but with more aggregation the model 

may produce unacceptable errors.  Error is then defined as the difference between the 

truth and the aggregated higher-level model output.  The greater the difference is from 

the truth, the more inaccuracies in the model is realized.  A user defined maximum 

acceptable error can be used to determine what the “best” model should be and therefore 

determine its corresponding spatial complexity.  If other complexity types are considered 

simultaneously with spatial complexity, a method for weighting the different complexity 

types must also be established [Van Lienden, 1998].  Unfortunately, Van Lienden doesn’t 

expound on how this can be done.  One can resort to the weighting scheme that is 

established based on the decision maker’s goals for the simulation model.  As mentioned 

earlier, some of the complexity types are correlated and therefore needs to be considered 

in the weighting scheme, i.e., complexity types that are positively correlated cannot have 

weights that are contradicting. 
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Figure 9 - "Best" Model Determination 

 
Not only is the method of aggregation important, but also how do we determine 

what to aggregate?  A possible solution is by determining component saliency [Van 

Lienden, 1998].  Less important components can be aggregated together, while more 

salient components may need to be modeled as is, without aggregation.  Component 

saliency will depend on the   specific output of interest, that is, for a specific simulation 

objective, there will be certain output(s) of interest and the saliency of components will 

depend on this particular objective(s).  [Bauer et al., 2000] defines feature (component) 

saliency measures, in the context of multi-layered perceptron feed-forward artificial 

neural network, as a way to calculate the efficacy of features and a method to rank order 

the features.  It might be that the aggregation of homogeneous components is easier to 

accomplish, but what about non-homogeneous components?  How do we combine their 

information and/or data into one?  Also, do we aggregate within or between models?  The 

issue of aggregation within or between models (in terms of mission level models) arises 

when more than one lower-level model is being considered for input into a higher-level 

model.  If only one lower-level model needs to be incorporated into a particular higher-

level model, then the within model output/input needs to be considered for aggregation.  

On the other hand, when multiple lower-level models are to be incorporated in a higher-

level model, then both within and between model output/input aggregations needs to be 

considered.  
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According to Sisti and Farr [1996], of all the enabling technologies in simulation 

science, model abstraction is possibly the most important enabling technology.  Zeigler et 

al. [2000] defines abstraction as the “method or algorithms applied to a model to reduce 

its complexity while preserving its validity in an experimental frame.”  Similarly, Frantz 

[1995] and Frantz & Ellor [1996] defined model abstraction as “a methodology for 

reducing the complexity of a simulation model while maintaining the validity of the 

simulation results with respect to the question that the simulation is being used to 

address.”  This implies that model abstraction cuts down on the complexity of the 

simulated system down to its vital parts and processes by means of a series of 

conceptualizations, selection of significant processes, and identification of the associated 

parameters [Pachepsky et al., 2006]. 

The supposed risk of eliminating certain significant processes or features 

frequently causes the analysts to applying rather complex models that simulate almost all 

the detailed aspects of the simulated system, resulting in monumental data-collection and 

modeling requirements.  Often, the detailed features, events and processes characterized 

in these complex models may have limited influence on the performance of a specific 

output.  This in turn causes extreme amount of time spent on data collection and 

computations as well as difficulties in interpreting simulation results and conveying the 

simulation approach to both technical and lay persons.  A well-constructed model 

abstraction produces a simpler model that provides a more comprehensible representation 

of the problem and affords more time and effort to be focused on the more important 

aspects, rather than getting lost in the minutiae.  Model abstraction techniques that can 

streamline and accelerate the evaluation of complex systems without considerable loss of 

accuracy would facilitate the synthesis and review of performance assessments 

[Pachepsky et al., 2006]. 

Abstraction is crucial in the construction of models for simulation.  It is a general 

process that is composed of several simplification methods.  The first summary of model 

simplification techniques was composed in Zeigler [1976].  The four categories of model 

abstraction techniques are: 
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 dropping unimportant parts of the model; 

 replacing some part of the model by a random variable; 

 coarsening the range of values taken by a variable; 

 and grouping parts of the model together. 

 

Zeigler’s [2000] more recent abstraction methods are shown in Table 4.  Abstraction 

techniques enable the modeler to perform more rapid analysis and wider ranging 

exploration at lower cost.  Several of these abstraction methods depend on the structure 

of the original model in order to attain an appropriate “lumped” model.  The 

homomorphism (a mapping preserving step-by-step state transition and output) concept 

then provides a measure for valid simplification.  Error is introduced when exact 

homomorphism is not reached.  However, the abstraction may still be applicable if the 

error does not increase so as to surpass the tolerance of goodness of fit.  The simulationist 

must consider the advantages of model abstraction against the costs (e.g., benefits in 

reduced run-time and memory requirements may be accompanied by certain loss of 

predictive accuracy) [Zeigler et al., 2000].  

 

Table 4 - Some Common Abstractions [Zeigler et al., 2000:333, Table 1] 
Simplification method Brief description Affects primarily

Aggregation 
 
 

Combining groups of components into a single component 
that represents their combined behavior when interacting 
with other groups 

Size and resolution

Omission Leaving out: Components, Variables, or interactions Size, Resolution, 
or Interactions 

Linearization Representing behavior around an operating point as a linear 
system Interactions 

Deterministic=>Stochastic 

Replacing deterministic descriptions by stochastic ones can 
result in reduced complexity when algorithms taking many 
factors into account are replaced by samples from easy-to-
compute distributions 

Interactions 

Stochastic=>Deterministic Replacing stochastic descriptions by deterministic ones, e.g., 
replacing a distribution by its mean Interactions 

Formalism transformation 
Mapping from one formalism to another, more efficient one, 
e.g., mapping differential equation models into discrete 
event models 

-- 
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Frantz [1995] and Frantz & Ellor [1996] took a similar approach to their model 

simplification techniques and introduced a comprehensive taxonomy of these techniques 

presented in Figure 10.  They claim that several of these techniques can be applied 

simultaneously.  The metamodeling simplification technique will be heavily explored in 

this research, specifically by means of artificial neural networks.   

The modeling and simulation community has used metamodels to learn the 

behavior of computer simulations for over forty years.  Parametric polynomial response 

surface approximations have been the most popular technique used for metamodeling 

[Barton, 1992].  Kilmer [1994] showed that in the application of the inventory problem, 

regression metamodels of the type typically used in response surface methods did not 

perform as well as the artificial neural network (ANN) metamodels, which Nasereddin & 

Mollaghasemi, [1999] and Fonseca et al. [2003] also echoed in their articles; but for 

completeness, we will also look at ordinary least squares (OLS) regression as an alternate 

aggregation technique. 
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Figure 10 - Taxonomy of Model Abstraction Techniques [Frantz, 1995, Fig 2] 
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Simulation models of new or existing real systems are frequently employed to 

make decisions on changes to the system design.  Analysts use the simulation model as a 

proxy because it is not viable to build multiple prototype versions of the real system; the 

proposed system is too new, extremely hypothetical, or non-existent.  Often the models 

are fairly intricate, therefore model simplification techniques such as a mathematical 

model of the simulation model, metamodels, are implemented [Kleijnen, 1987].  

Metamodels can more easily demonstrate the basic characteristic of the more intricate 

simulation model.  It may also be useful in identifying significant parameters (features) 

that are most influential to the system performance (i.e., pre-processing such as feature 

dimensionality reduction).  Replacing a more complex module(s) of a larger, more 

complicated simulation model with a metamodel can be a very valuable approach, 

especially if the original model is just one component of the complex system.  

Incorporation of a metamodel into the complex simulation system for some or all of its 

components can greatly reduce the size and execution time of the large complex system 

[Barton, 1992].   

Barton [1994] lists related metamodeling techniques implemented in the field, 

such as spatial correlation models, splines, kernel smoothing, frequency-domain 

approximations, and radial basis functions (RBFs).  Some application of simulation 

metamodels were done in:  Kilmer [1994; 1996; 1997] employing the feed-forward ANN 

(FANN), Gordon et al. [1994] used second-order regression metamodel for a spacecraft 

in orbit, Jorch et al. [2001] generated look-up tables and RBF ANN for the Space Based 

Radar, and Alam et al. [2004] also explored the multilayer FANN in the context of 

investigating different experimental designs for a deterministic combat model.  One 

noteworthy result of Kilmer’s [1994] dissertation showed that using separate networks 

for different outputs produced better predictions than combined networks.  Also, 

networks trained on individual observation data had better generalization performance, 

using the mean absolute error (MAE) criteria, than networks trained on the averages of 

the simulation output replications.  The second point actually makes sense since this also 

provides more data points for training the ANN.  However, on the first point, using 
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separate or one network all depends on how persistent the analyst is in the construction of 

the ANN model to build the best representation of the simulation model. 

As previously discussed, ANN will be extensively used as the metamodeling tool 

for use in the aggregation of the simulation model.  The three ANN that will be 

implemented for the aggregation process of the prediction problem will be feed-forward, 

radial basis function, and the generalized regression neural network (GRNN), which are 

the recommended ANN prediction problem tools by StatSoft [2007].  The ANN with the 

smallest root mean square error (RMSE) will be considered the best neural network 

representation of the simulation model and will be used as the ANN metamodel of the 

lower-level simulation models.  The main reason for choosing the RMSE as the measure 

of performance for the ANN is due to its ability to incorporate a measure of both the 

variance and the square of the bias of the prediction errors [Alam et al., 2004].  The 

Direct Method (DM) and the three different ANN methods, along with the RMSE 

calculation, will be discussed in more detail later in the methodology chapter.   

2.6 Modeling and Simulation Software Tools 

Simulation software provides organizations the capability to effectively capture essential 

aspects of vital operations.  Investing in the use of simulation has been shown to be an 

important part of continuous decision-making and calls for tools that can integrate data, 

models, and graphics from many different sources. 

 As part of an effort to help the Air Force analysis community to consolidate their 

efforts, a set of standard toolkit of models were established, called Toolkit Models 

contained in the Air Force Standard Analysis Toolkit (AFSAT), as depicted in Figure 11.  

These models are considered the Air Force standard for modeling a variety of different 

combat activities [AFI 16-1002, 2000].  In addition to modeling combat activities, 

AFSAT is recommended in analytical assessments concerning strategic planning, 

capability requirements, and weapon systems development, acquisition, and testing [AFI 

16-1003, 2006:1].  The AFSAT divides simulation into three levels: Campaign, Mission, 

and Engagement.  Each level of the hierarchy contains the particular models that are 
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being used to model a specific level of simulation currently being used for combat 

models.     

 

CFAM  AMOS
LCOM    THUNDER 

JIMM  EADSIM   SEAS
SPAAT   SUPPRESSOR   SCOPES

BRAWLER         MIL‐AASPEM II 
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HUNDREDS OF ENGINEERING MODELS
( NOT IN THE TOOLKIT ‐ BY DESIGN )

MISSION

CAMPAIGN

ENGAGEMENT

SPECIALTYAGGREGATION

RESOLUTION

 
Figure 11 - Air Force Standard Analysis Toolkit (AFSAT) 

 

AFI 16-1003 [2006] lists the specifics on the procedures and criteria for entering 

new models into the AFSAT and for retiring models from the AFSAT.  It also covers the 

policies and procedures that govern the management of the AFSAT.  For more details on 

the specific models that are contained in each level, such as THUNDER or LCOM in the 

Campaign level of Figure 11, an updated list and their respective descriptions should be 

reviewed regularly for currency.  A brief description of each of the models in the 

AFSAT, compiled from the AF/A9 - Studies & Analyses, Assessments, and Lessons 

Learned website, is provided in Table 5. 
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Table 5 - AFSAT Details 

Model Acronym Level Brief Description Organizational 
Manager 

Combat Forces Assessment 
Model CFAM Campaign 

- air and ground large-scale 
linear program optimizer 
- addresses resource 
allocation problems 
- consists of the Air Strike 
GAMS module and a 
Visual Basic GUI 

HQ AF/A9FC 

Air Mobility Operations 
Simulation AMOS Campaign 

- supports air mobility 
analysis requirements 
- generates a feasible 
schedule of AMC assets 
- provides analytical insight 
to the feasibility of the air 
mobility portion of a 
TPFDD 

HQ AMC/A59 

Logistic Composite Model LCOM Campaign 

- large-scale linear program 
optimizer 
- models details of 
reliability and maintenance 
- addresses manpower and 
other logistical 
requirements 

AFMA/MAIP 

THUNDER -- Campaign 

- stochastic model that 
supports modeling 2-sided 
large-scale military ops 
- provides insight into the 
full range of potential 
outcomes of a military 
campaign 

HQ AF/A9A 

Joint Integrated Mission Model JIMM Mission 

- discrete-event, language-
driven, general purpose 
simulator 
- used to generate complex 
tactical environments for 
aircraft-related analysis or 
testing 

US Navy 
JIMM Model 
Management 

Office (JMMO) 

Extended Air Defense 
Simulation EADSIM Mission 

- models air, space and 
missile warfare ranging 
from FvF to MvM 
- data-driven, physics-
based, distinct-entity 
stochastic simulation 
capable of Monte Carlo 
iterations 

US Army  
SMDC-BL-ST 

System Effectiveness Analysis 
Simulation SEAS Mission 

- agent-based MvM 
stochastic modeling tool 
- typically used for military 
utility analyses of present 
and future space systems to 
explore combat 
outcome sensitivities to 
C4ISR, CONOPS, and 
force structures 

SMC/XDIA 

Sensor-Platform Allocation 
Analysis Tool SPAAT Mission 

- DOS-based, low-budget, 
linear program optimizer 
- used primarily for 
screening ISR 
architectures for further 
exploration in THUNDER, 
CFAM, and other campaign 
models 

HQ AF/A9FM 
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SUPPRESSOR -- Mission 

- used for CONOPS and 
electronic combat analysis 
- used to simulate a raid of 
strike and support 
aircraft vs. enemy 
Integrated Air Defense 
System (IADS) 
- supported by several 1v1 
and engineering simulation 
models  

ASC/ENMM 

SCOPES -- Mission 

- provides comprehensive 
M&S of orbital objects, 
missiles, ground sensors, 
and their relationship to the 
earth 
- Space Command’s 
premier M&S tool for 
space analysts, mission 
planners, educators, 
trainers, and warfighters to 
aid in Space Situational 
Awareness (SSA) 

HQ SWC/XID 

BRAWLER -- Engagement 

- simulates air-to-air 
combat between multiple 
flights of aircraft in both 
visual and beyond-visual 
range (BVR) arenas 
- emphasis placed on 
simulating cooperative 
tactics and on capturing the 
importance of situation 
awareness 

HQ AF/A9FM 

Man-In-Loop Air-to-Air 
System Performance 
Evaluation Model II 

MIL-AASPEM II Engagement 

- a tactical real-time air 
combat model for the 
evaluation of 1v1 through 
MvM players  
- used to evaluate weapons 
system performance and 
effectiveness in air-to-air 
engagements, tactics 
development, etc. 

ASC/HPMT 

GPS Interference & Navigation 
Tool GIANT Engagement 

- used to determine 
navigation system 
performance and its impact 
on operational 
effectiveness, principally in 
an electronic combat 
environment 
- is PC-based and runs 
much faster than 
real-time 

SMC/TDXM 

JMASS Threat Engagement 
Analysis Model JTEAM Engagement 

- simulates engagement 
between a single electro-
optical /infrared (EO/IR) 
threat missile and one or 
more target aircraft 
equipped with infrared (IR) 
countermeasure flares 

AFIWC 
453dEWS/EWA 
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Enhanced Surface-to-Air 
Missile Simulation ESAMS Engagement 

- is a commonly used SAM 
simulation supporting AF 
R&D and acquisition 
programs  
- models a 1v1 engagement 
of a Radar Frequency (RF) 
SAM against an air 
breathing penetrator or 
ballistic target  
- gauges the survivability 
effectiveness of aircraft 
maneuvers, ECMs and 
defensive expendables 

ASC/ENMM 

Modeling System for 
Advanced Investigation of 

Countermeasures 
MOSAIC Engagement 

- is a 1v1 digital modeling 
environment 
- simulates end-to-end 
engagements between 
advanced IR missiles and 
aircraft equipped 
with advanced IRCM 

AFRL/SNJW 

Georgia Tech Simulations 
Integrated Modeling System GTSIMS Engagement 

- is a FvF model  
- used to analyze aircraft 
survivability against SAM 
or other EO/IR guided 
missile threat in an IRCM 
and cluttered environment 

Georgia Tech 
Research 
Institute 

SHAZAM -- Engagement 

- is a mathematical model 
that evaluates the 
effectiveness of an air 
intercept missile against an 
air target  

ASC/ENMM 

Joint Service Endgame Model JSEM Engagement 

- is a simulation program 
that evaluates terminal 
effectiveness (endgame) of 
a fragmenting munition 
against a target (usually 
airborne) 

NAVAIR-WD 

RAdar Directed GUN System RADGUNS Engagement 

- is a 1v1 engagement 
between aircraft and Air 
Defense Artillery (ADA) 
threat systems 
- is used to evaluate the 
effectiveness of ADA 
gun systems against 
penetrating aerial targets 
for weapon lethality and 
aircraft susceptibility 
/vulnerability/survivability 

NAVAIR 
/Survivability 

Integration 
Branch 

 

Due to the size and complexity of the models in the AFSAT, the models 

contained within the collection take a tremendous amount of time to run and the learning 

curve is quite steep even for mere familiarization of these models.  Thus, not all models 

built in the military use the tools specified in the AFSAT.  In addition, for the purpose of 

this research, obtaining pre-built hierarchical AFSAT models, proved to be more difficult 

than expected due to lead time, sensitivity and proprietary issues.  In order to achieve any 

implementation required for the proof of concept application in this research, a more 

https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/MOSAIC_Briefing_Aug11_2004.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/GTSIMS.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/GTSIMS.pdf�
https://www.my.af.mil/gcss-af/USAF/AFP40/Attachment/20070129/JSEM_overview.pdf�
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accessible type of constructive simulation models built in Arena were examined.  Next, 

we provide a brief description of the Arena discrete event simulation software.  The 

specific application model descriptions are described in Chapters 4 and 5, for the Flying 

Training Model and ALS Sortie Generation Model, respectively. 

Arena®  

Arena is a flow oriented, general-purpose visual simulation language.  It is well suited in 

flow-oriented settings like manufacturing, insurance, or information flow situations.  It 

provides modeling flexibility, enabling analysts to capture system dynamics.  Arena also 

has the capability to simulate objects including process logic, data, performance metrics, 

and animation that model components of the real system. 

 The design of the core product engine provides robust modeling and integration 

capabilities and makes Arena easy to learn and use.  It has been enhanced by the addition 

of many functional modules, full visualization of model structure and parameters, 

improved input and output analysis tools, run control and animation facilities, and output 

reporting.  Additionally, users can find ease and familiarity through Arena’s 

compatibility with Microsoft® products and Matlab®.  The Matlab-Arena compatibility 

will come in especially handy in the analysis portion in this research effort. 

 Arena is developed using the SIMAN language.  When an Arena model is 

created, it is implemented in SIMAN code.  For someone who is already an expert in the 

SIMAN language, this will facilitate in understanding the error messages, which appear 

occasionally.  However, understanding the structure of SIMAN in great detail is not 

necessary to use Arena.  A high level graphical front end for SIMAN, Arena models are 

built by placing icons onto a drawing board and then linking these icons or blocks 

together to define model logic.  It delivers the capabilities needed for analyzing all types 

of systems by employing an object-oriented design for entirely graphical model 

development. 
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III. Aggregation Methodology Development 

3.1 Overview 

The initial approach used in this research was the use of realistic simulation models, 

across various applications, to implement model aggregation techniques, involving 

feature selection/extraction, VRT, and several other metamodeling methods to include 

regression and artificial neural networks.  It is important to remember that the 

construction of the simulation model in this research is a significant step for the 

generation of data.  For the purposes of testing the techniques proposed, a flying training 

model built for another study was modified to suit the needs of the research effort.  Also, 

another simulation model, the sortie generation process model by Paul Faas [Faas, 2003], 

was examined in order to apply the proposed aggregation methodologies.  However, 

before applying the aggregation methodologies to these two application models, the ANN 

aggregation methodology using the feed-forward and radial basis function (RBF) ANNs 

were tested on the Law and Kelton [1991] inventory problem data for feasibility.  The 

actual data used for the ANN manipulation were taken from the simulation results of the 

same inventory system from Kilmer [1994]. 

 This research presents a logical and effective solution methodology for evaluating 

and conducting aggregation of large hierarchical simulation models with applications to 

real world models to clearly demonstrate the approach and its benefits to the overall 

simulation goals.  Often aggregation is viewed and implemented through a logical 

grouping of entities within a simulation (perhaps based on physical considerations of the 

systems being modeled).  Our approach takes a broader and more objective (using a 

mathematical framework) view of the entire logical and structural structure of a 

simulation and specific processes modeled in formalizing procedures to more 

appropriately and accurately capture information for aggregation.  This approach better 

defines the issues and challenges involved with the exchange of information between 

simulation models at different hierarchical levels.  Our novel use of sophisticated 

metamodeling techniques in conjunction with our well defined structural and logical 

aggregation (or decomposition) lays the foundation for eventually replacing very large 
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aggregated models with a series of interconnected metamodels, capable of providing 

decision makers with accurate system performance results in a fraction of the time used 

with original simulation. 

 Keeping in mind the focus of hierarchical simulation, we not only want to capture 

the mean of the simulation, but we also want to capture a better representation of the 

underlying distribution of the simulation at the higher-level by using different 

aggregation methods.  This concept of replacing the lower-level model outputs Y with an 

alternate aggregation method and capturing its effects on the higher-level model output Z 

is best depicted in Figure 12.  In Figure 12, a sample of a structural aggregation (within-

a-model) and logical aggregation (within-a-level) using the first two aggregation 

methods, M1 and M2, as implemented in the lower-level and its effects on the output of 

the higher-level model is illustrated.  An in depth discussion of the steps involved in 

Figure 12 is the main focus of this aggregation methodology chapter. 
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Figure 12 - Aggregation Methodology Development 



 36

This chapter is built upon the discussion of the methodology used in this research.  

The organization of this chapter is as follows.  Section 3.2 discusses the ANN feasibility 

study on the Law and Kelton [1991] inventory problem.  In Section 3.3 the proposed 

overall aggregation process is outlined.  In Section 3.4 the methodology to 

mathematically represent and decompose a discrete event simulation model for 

aggregation is described along with a sample problem.  Next, the method for determining 

the number of replications in a simulation model to obtain a desired precision accuracy 

for output(s) of interest is described in Section 3.5.  The eight different aggregation 

methodologies are detailed in Section 3.6.  Section 3.7 describes the set-up for the 

training and testing data for use in the regression and ANN methods.  Finally, Section 3.8 

provides a description of how the lower- and higher-level model outputs are compared 

for evaluation and specifies the performance estimation technique that will be employed 

to determine the accuracy of the metamodeling techniques used.   

3.2 Experimental Toy Model: (s, S) Inventory System 

The inventory system used for the initial toy model is a probabilistic lot size-reorder point 

system, where s = reorder point quantity, and S = order up to quantity, with a time 

horizon of 120 months.  There are several input and output parameters involved in this 

Law and Kelton [1991] sample problem, but only the data taken from Kilmer’s [1994] 

Appendix A, Tables A1 and A2, with the 4-input: s, d, k, and w (where d = S-s, d: reorder 

quantity when I = s; I: inventory level; k: set-up cost; w: k/u; u: cost of backlog orders) 

were used for the ANN testing.  These four input parameters were allowed to vary and 

the remaining parameters were considered constant.  The two Kilmer simulation outputs 

are C (average cost) and Var (C ) (variance of C ).  The combined data used for the 

initial ANN experiment is listed in Table A1, Appendix A. 

The data in Table A1 were used in training and testing the feed-forward and radial 

basis function, the two initial ANN used for the prediction problem.  The 234 data points 

were randomly divided into training (164 exemplars) and testing (70 exemplars) datasets 

and iterated 100 times.  One of Kilmer’s [1994] dissertation findings recommended 
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building individual networks per output, thus two 4-1 (input-output) networks were built 

for the two outputs C  and Var (C ).  To view the Matlab code, see Appendix A.  

Similarly, one of the powers of the neural network is being able to “reverse” the network 

[Nasereddin and Mollaghasemi, 1999] and code the original outputs as the new inputs 

and the old inputs as the new outputs; thus, four 2-1 (input-output) networks were built 

for the four outputs s, d, k, and w.  This was deemed important for investigation in order 

to determine if the original inputs can be reproduced using network outputs.  An inquiry 

into knowing what the input parameters need to be set to, in order to achieve certain 

output values, can be quite difficult to accomplish in the simulation model without having 

to rebuild the entire simulation model.  This “reverse” task is not quite as difficult to 

accomplish using ANN.   

The main goal of the ANN coding in Matlab is not necessarily to build the best 

network structure for prediction; rather, to ensure that the process can be executed using 

the proposed ANN methodologies.  The “fine tuning” of the parameters will be 

investigated more thoroughly with the two applications models to identify their optimum 

ANN topology (best combination of parameters).  Tables 6 and 7 depict the initial results 

achieved for the two ANN methods. 

 

Table 6 - Inventory Data Radial Basis Function ANN MAE/MAPD 
Data Set ANN Structure Output MAE  MAPD 

Trng 
4-1 C  19.3 

13.3% 

Test 
4-1 C  19.6 

13.6% 

Trng 
4-1 Var( C ) 1.0 

62.5% 

Test 
4-1 Var( C ) 1.1 

73.3% 

Trng 2-1 s 14.0 36.4% 
Test 2-1 s 14.0 36.4% 
Trng 2-1 d 16.6 39.7% 
Test 2-1 d 16.7 39.8% 
Trng 2-1 k 14.3 30.4% 
Test 2-1 k 14.7 31.4% 
Trng 2-1 w 4.0 38.5% 
Test 2-1 w 4.1 40.6% 
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Table 7 - Inventory Data Feed-forward ANN MAE/MAPD 
Data Set ANN Structure Transfer Functions Output MAE  MAPD 

Trng 
4-5-5-1 Logsig-Logsig-Purelin C  21.6 

14.9% 

Test 
4-5-5-1 Logsig-Logsig-Purelin C  24.3 

16.8% 

Trng 
4-5-5-1 Logsig-Logsig-Purelin Var( C ) 0.24 

15.0% 

Test 
4-5-5-1 Logsig-Logsig-Purelin Var( C ) 1.8 

120.0% 

Trng 
4-5-5-1 Tansig-Tansig-Purelin C  22.4 

15.5% 

Test 
4-5-5-1 Tansig-Tansig-Purelin C  24.5 

17.0% 

Trng 
4-5-5-1 Tansig-Tansig-Purelin Var( C ) 0.23 

14.4% 

Test 
4-5-5-1 Tansig-Tansig-Purelin Var( C ) 1.3 

86.7% 

Trng 2-3-3-1 Logsig-Logsig-Purelin s 12.6 32.7% 
Test 2-3-3-1 Logsig-Logsig-Purelin s 13.6 35.3% 
Trng 2-3-3-1 Logsig-Logsig-Purelin d 16.2 38.8% 
Test 2-3-3-1 Logsig-Logsig-Purelin d 16.3 38.8% 
Trng 2-3-3-1 Logsig-Logsig-Purelin k 17.2 36.5% 
Test 2-3-3-1 Logsig-Logsig-Purelin k 17.1 36.5% 
Trng 2-3-3-1 Logsig-Logsig-Purelin w 3.8 36.5% 
Test 2-3-3-1 Logsig-Logsig-Purelin w 4.0 39.6% 
Trng 2-3-3-1 Tansig-Tansig-Purelin s 10.7 27.8% 
Test 2-3-3-1 Tansig-Tansig-Purelin s 11.8 30.6% 
Trng 2-3-3-1 Tansig-Tansig-Purelin d 16.2 38.8% 
Test 2-3-3-1 Tansig-Tansig-Purelin d 17.0 40.5% 
Trng 2-3-3-1 Tansig-Tansig-Purelin k 16.9 35.9% 
Test 2-3-3-1 Tansig-Tansig-Purelin k 18.0 38.5% 
Trng 2-3-3-1 Tansig-Tansig-Purelin w 3.8 36.5% 
Test 2-3-3-1 Tansig-Tansig-Purelin w 4.0 39.6% 

 

The parameters used for the RBF ANN were: mean squared error goal = 0.001 

and an RBF spread of 1.0.  An ANN structure of 4-1 in Table 6 indicates 4 inputs and 1 

output.  In Table 7, the number of hidden layers and the number of nodes in a specific 

hidden layer were manipulated in the feed-forward architecture.  A 4-5-5-1 structure 

indicates 4 inputs, 2 hidden layers with 5 nodes in each hidden layer, and 1 output.  The 

corresponding transfer function follows the same structure.  A Logsig-Logsig-Purelin 

transfer function in Table 7 indicates a Logsig transfer function in each of the two hidden 

layers and the Purelin corresponds to the transfer function of the single output.  For both 

Tables 6 and 7, the output measures of performance evaluation were based on the mean 

absolute error (MAE) and the relative error measure of mean absolute percent deviation 

(MAPD).  A more detailed discussion on how to calculate these measures is discussed in 

Section 3.8.  An important finding in accomplishing the Matlab runs was ensuring that 

the randomized data for the individual networks were synchronized; that is, ensuring that 
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the same set of training and test data were used every single iteration in order for the 

outputs to stay in sync.   

Kilmer’s [1994] dissertation finding of comparing individual ANN’s per output or 

multiple outputs were also tested.  The single neural network per output produced lower 

MAEs than the multiple outputs ANN.  That is, using the same parameter structure for 

both single and multiple output models, without consideration of finding the best 

structure for either models.  Each model, the single and multiple output structure, could 

be modeled with their own specific “best” parameters to really compare the effects of the 

output structure.  As previously mentioned, best parameter determination was not 

paramount for this implementation, thus this will be accomplished for the actual real-

world applications.  The two-sample t-test and the Wilcoxon rank-sum test were used for 

this comparison.  Another comparison that could be accomplished is a comparison 

between the different ANN architectures, such as comparing a feed-forward ANN to the 

RBF ANN, in addition to comparing the different transfer functions and number of 

hidden layers for the feed-forward architecture.  An important factor to keep in mind is 

the fact that certain ANN architecture might work better than others depending on the 

type of data that is being analyzed.  Therefore, just because a certain architecture works 

better, as in the case of the RBF for the inventory data (at least for C ), this doesn’t 

necessarily mean it will always be the norm.  Although, the RBF architecture did run at 

least ten-fold faster than any of the feed-forward architectures. 

3.3 Proposed Aggregation Process 

The proposed overall aggregation procedure is best summarized in Figure 13.  Figure 6 is 

a closer view of Step 2 from Figure 13 and is discussed in more detail later in Section 3.6.  

There is no universal method to solve every problem and the process prescribed here is 

just that, one way to properly capture the model aggregation process.  The analyst must 

choose based on the advantages and disadvantages of particular methods.  In most cases, 

the different statistical procedures selected in this research have been extensively used 

and explored successfully in the field, but the combination of these different techniques 
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into one continuous process for model aggregation purposes is what will make the 

proposed process comprehensible and executable.   
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Figure 13 - Overall Model Aggregation Procedure 

 

Figure 13 outlines a 3-step process with the additional assumption that a set of 

hierarchical simulation models are already in existence (Step 0) before executing the 

aggregation procedure.  Step 1 consists of identifying candidate submodels (entities, 

events, and/or processes) for aggregation, which is discussed in detail in Section 3.4.  

Step 2 is performing the different aggregation techniques detailed in Section 3.6.  For the 

final step, Step 3, in order to determine the accuracy of the metamodeling techniques, 

some form of performance estimation has to be established.  The recommended 

performance estimation measures are detailed in Section 3.8.   

In order to perform aggregation of large hierarchical simulation models, the 

question of “what” (Step 1) and “how” (Step 2) needs to be addressed.  The “how” part of 

the aggregation process will be addressed in more detail in Section 3.6 by means of 
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different statistical techniques such as variance reduction, regression, ANN, etc.  To 

facilitate the “what” portion of the aggregation process the hierarchical simulation model 

needs to be characterized in a mathematical format to aid in determining what portion of 

the entire simulation model can be aggregated; this is discussed in more details in the 

next section.   

 As depicted in Figure 6, before implementing any of the aggregation techniques, 

we can improve statistical fidelity on the prediction by performing some pre-processing 

of the inputs and outputs of our higher resolution models (in this example Mission 

Level).  Looking specifically at an ANN approach, before representing the entire feature 

set (the individual inputs from the higher-resolution models passed to the lower-

resolution model) into the parameterized aggregation function, it is often beneficial to 

perform different combinations of initial pre-processing before the data is transformed 

into some new representation to improve the prediction process.  Next we describe some 

of the techniques that are typically used for data pre-processing: normalization, 

standardization, and PCA.  These pre-processing methods may lead to improved overall 

performance of the simulation and its metamodel.  

 Variables (features) may have different scales although they pertain to similar 

objects.  Consider for instance an exemplar (sample data) x = [x1, x2] where x1 is a 

measure of width in feet and x2 is some height measured in meters.  Both can be 

compared, added or subtracted, but it would be inappropriate to do so before appropriate 

transformation (scaling) of the data.  This is the motivation for using normalization 

and/or standardization which is discussed next. 

Normalization  

The data modification in this method is to individually normalize each set of ith feature 

values into some specified range.  Let i be fixed and use the linear transformation Li on 

the ith component range [xmin(i), xmax(i)] and map each sample into the range [a, b].  

Mathematically, normalization is expressed as 
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where xi
* is the transformed data, b is the desired maximum range, a is the desired 

minimum range, and min( )ix and max( )ix are the minimum and maximum of feature xi over 

the entire training samples, respectively.  Looney [1997:88] suggests using this 

preprocessing technique when applying it to the feed-forward neural network.  Looney 

[1997:355] also suggests using [0, 1] for the RBF networks and [∈, 1-∈] for the feed-

forward neural networks.  A suggested value for ∈ is 0.2 or 0.15 [Looney, 1997:355]. 

Standardization  

In this method, each feature in an exemplar is standardized (i.e., has zero mean and one 

unit of standard deviation) by subtracting the mean and dividing by the standard 

deviation of that particular feature.  The standardization is accomplished for each feature 

and is typically expressed mathematically as 
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where xi
* is the transformed data, and μi and σi are the mean and standard deviation of 

feature xi over the entire training samples.  It is important to keep in mind that when 

applying standardization to the testing data, the analyst should use the mean and standard 

deviation derived from the training data; this is also true when performing the 

normalization on the testing data where the min and max used should be calculated from 

the training data. 
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Principal Component Analysis (PCA) 

PCA (also known as the Karhunen-Loève transformation) is a data reduction technique 

used to reduce a complex dataset to a lower dimension to expose the sometimes hidden, 

underlying structure of a high dimensional data (e.g., data with several features).  This 

technique falls under unsupervised learning where the algorithm learns important 

patterns or features in the input data without the aid of the target (output) data [Haykin, 

1999:392].  The basic premise is to transform the original set of variables (features) into 

some smaller set of linear combinations that explain the most variance of the original 

dataset [Dillon and Goldstein, 1984:24].  In PCA, it is typical to transform the raw data to 

either a covariance matrix or a correlation matrix before proceeding with the actual 

principal component analysis.  The most common approach is to use the matrix of 

correlations versus the covariance matrix [Dillon and Goldstein, 1984:26].  The main 

reason for using the correlation matrix is that the input data more often than not have 

different unit and scales whereas the correlation computation removes the variation thus 

making the data directly comparable [Dillon and Goldstein, 1984:26].  Depending on 

which matrix is used for the PCA, the solutions will differ.  In order to demonstrate the 

method of PCA, the sample means, variances, covariances and the correlations between 

the features need to be calculated.  Next we describe the general PCA algorithm using the 

basic statistical derivation presented in Dillon and Goldstein [1984]. 

PCA Algorithm 

Step 1:  Collect raw data.  Assume data is the form n x d where n is the data sample size 

and d is the dimension of the data (number of features). 

Step 2:  Subtract the mean.  The mean that needs to be subtracted is the average across 

each dimension (each feature’s average).  The data at this point has been mean corrected. 

Step 3:  Transform the mean corrected data into a covariance and correlation matrix.  The 

covariance between x1i and x2i is given by 

1 2 1 2
1

1 n

x x i i
i

C x x
n =

= ∑      (3.3) 
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where x1i and x2i are the ith sample of the first and second features, respectively.  The 

correlation matrix uses the standardized data where the mean corrected data is divided by 

their respective standard deviation.  Letting x1i
* = x1i/σx1 x2i

* = x2i/σx2, the correlation 

between x1i and x2i is given by 

1 2

* *
1 2

1

1 n

x x i i
i

R x x
n =

= ∑ .     (3.4) 

Step 4:  Perform eigenanalysis on the R and C matrices.  Eigenanalysis is simply 

extracting the eigenvalues (also called characteristic roots or latent roots) and 

eigenvectors (also known as characteristic vectors) of the desired matrix.  See Jackson 

[1991:7-10] for a good example of how to perform an eigenanalysis on a two-feature 

dataset.  Once the eigenvalues are extracted from the R matrix, use Kaiser’s criterion (λ ≥ 

1) to determine how many r principal components to retain [Dillon and Goldstein, 

1984:48] (i.e., retain r ≤ d).  There are other criterions for determining the number of 

factors to retain such as Cattell’s scree test and the Horn’s test when using the R matrix 

[Dillon and Goldstein, 1984:48-50].  Next extract the eigenvalues and eigenvectors from 

the C matrix. 

Step 5:  Form the component scores.  For the extracted eigenvectors from the C matrix, 

the component scores denoted by the ith sample are 
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where ix  is the ith observation vector and x is the average of the sample vector from the 

training data.  The component scores Y is represented as a n x r matrix [Dillon and 

Goldstein, 1984:51] 

 

1Y I E X
n

⎛ ⎞= −⎜ ⎟
⎝ ⎠

A      (3.6) 

 

where X is the n x d data matrix, I is the n x n identity matrix, E is the n x n matrix of 

ones, and A is the d x r matrix whose columns are the first r eigenvectors (loadings) of 

the C matrix.  If the loadings A are derived from the R matrix, the X matrix in equation 

(3.6) would be substituted with the standardized score matrix instead of the mean 

corrected data as shown in equation (3.5) [Dillon and Goldstein, 1984:51]. 

After the pre-processing stage, implementing some type of variance reduction 

technique (VRT) could prove beneficial in the reduction of the variance of the 

simulation-generated estimators.  This is useful when we are interested in certain 

quantities like the mean of the simulation.  The most commonly used variance reduction 

techniques in the field are common random numbers (CRN; also known as correlated 

sampling), antithetic variates (AV), and control variates (CV; also known as regression 

sampling) [Kleijnen, 1977].  It is recommended that an initial pilot run be performed to 

assess the value of any VRT being considered [Kleijnen, 1977].  Usually, VRT can 

greatly reduce simulation run lengths and still give accurate estimates of the desired 

parameters.  In addition, the use of VRT can produce smaller confidence intervals for the 

same number of simulation replications.  Due to the monolithic tendencies of aggregated 

combat models, engaging some type of VRT may greatly reduce the required number of 

simulation runs which tend to be costly in terms of time and money.  Thus, at every 

possible opportunity, VRT should be implemented (and learned by the analyst) since it 

can yield a more effective simulation, typically at a cost that is relatively minor as 

compared to the total cost of the simulation [Nelson, 1990].  We also investigated three 

types of neural networks in order to build the prediction metamodel of certain simulation 
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outputs: FANN, RBF, and the generalized regression neural network (GRNN), which are 

the typical ANN prediction problem tools used in the field.    

For step 3 of our process set forth in Section 3.8, in order to determine the 

accuracy of the metamodeling technique, some form of performance estimation has to be 

established.  For this analysis we will use the method described in Sections 10.2-10.3 in 

Law [2006:552-561] and some of the heuristic procedures discussed in Law [2006:330-

359] to determine if the alternative methods are significantly different from the Direct 

Method (DM) approach.  The alternate method that is not statistically different from the 

DM approach and has the smallest error function mean absolute error (MAE) from DM 

will be considered “best” alternative for that specific simulation application in terms of 

the means.  In addition, the higher-level simulation outputs can be further assessed using 

graphical comparison methods and the Kolmogorov-Smirnov test for comparing 

distributions.  The details on how to employ the recommended performance estimation 

techniques are discussed in Section 3.8. 

3.4 Mathematical Representation of a Discrete Event Simulation (DEVS) using factor 

analytic method 

In order to perform aggregation of large hierarchical simulation models, the question of 

“what” and “how” needs to be addressed.  The “how” part of the aggregation process will 

be addressed in more detail in Section 3.6 by means of different statistical techniques 

such as variance reduction, artificial neural networks, etc.  To facilitate the “what” 

portion of the aggregation process the hierarchical simulation model needs to be 

characterized in a mathematical format to aid in determining what portion (lower-level or 

submodel) of the entire simulation model can be aggregated.  Based on the work by 

Bauer et al. [1985; 1991] and Matthes [1988] a good mathematical representation of the 

simulation structure is through the construction of a network representation of the model.  

This, in turn, can be systematically decomposed into smaller subnetworks by performing 

model decomposition by means of factor analytic methods to represent a portion of that 

model that can be aggregated.  The reason for decomposing large model representation is 

to ease model implementation at smaller segments.  The level of aggregation performed 



 47

depends on what level of detail needs to be maintained.  In terms of hierarchical 

simulation models, the aggregation can be performed either at the highest level, where 

the entire simulation model within a level is aggregated, or within the individual model 

itself.  We will distinguish between the within-a-level and the within-a-model as logical 

and structural decomposition, respectively.  We define the decomposed portions of the 

simulation model for the logical and structural as lower-level models and submodels, 

respectively.  An example of each type of decomposition is demonstrated in the two 

application models investigated in this research; the logical decomposition is 

demonstrated for the flying training model and the structural decomposition is 

accomplished for the sortie generation model. 

The first step is to build a network structure representation of the simulation 

model in order to identify what can be aggregated.  The network structure is built using 

nodes (vertices), arcs (edges), and relationship(s) between nodes.   

Based on the textbook definition by West [2001] the following is the definition of 

a graph 
 

Definition.  A graph G is a triple consisting of a vertex set V(G), and 
edge set E(G), and a relation that associates with each edge two vertices 
(not necessarily distinct) called its endpoints [West, 2001:2, Definition 
1.1.2]. 
 
 

Additionally, a graph is drawn by setting each vertex at a point and signifying 

each edge by a line connecting the locations of its endpoints.  The values assigned to the 

edges are the amount of information (e.g., number of inputs, attributes, etc.) being passed 

between vertices.  A graph may be undirected, which means that there is no specified 

flow between the vertices that the edges are connecting and therefore could go both ways, 

or the edges may be directed where there is a distinct flow between vertices and only go 

one way.  The arrow heads on the edges show the direction of information flow, 

specifically for directed graphs.  Figure 14 is an example of a directed graph.  Figure 14 

depicts a graph with the following representation  

 
G = {V(G), E(G), R(G)}     (3.7) 
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where V(G) = {N1, N2, N3, N4, N5, N6, N7, N8, N9}, is the vertex set, 
 E(G) = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}, is the edge set, 
 R(G) = {eN1↔N2, eN1↔N3, eN2↔N3, eN1→N4, eN4→N7, eN7→N1, eN4↔N5, eN4↔N6,...                                                     

eN5↔N6, eN7↔N8, eN7↔N9, eN8↔N9}, is the set of relations. 
 

 

A matrix is typically a clear and efficient manner of representing a graph for use 

in analysis.  A graph can also be represented in terms of its adjacency and/or incidence 

matrix.  Fundamentally, the incidence matrix captures the vertex-to-edge relationships 

while the adjacency matrix captures the vertex-to-vertex relationships.  The following is 

its formal definition 

 
Definition.  Let G be a loopless (multiple edges are allowed but loops are 
not) graph with vertex set V(G) = {υ1,..., υn} and edge set E(G) = {e1,..., 
em}.  The adjacency matrix of G, written A(G), is the n-by-n matrix in 
which entry ai,j is the number of edges in G with endpoints {υi, υj}.  The 
incidence matrix M(G) is the n-by-m matrix in which entry mi,j is 1 if it is 
an endpoint of ej and otherwise is 0 [West, 2001:6, Definition 1.1.17]. 
 

The adjacency matrix A(G) = (ai,j) is therefore given by 
 
 

i j
,

1     ( , ) ( )
0             otherwise,i j

E G
a

υ υ ∈⎧
= ⎨
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     (3.8) 

 
 
and the incidence matrix M(G) = (mi,j) of a graph is given by 
 
 

i
,

1  if  is an endpoint of 
0                        otherwise.

j
i j

e
m

υ⎧
= ⎨

⎩
     (3.9) 

We demonstrate the decomposition process by factor analytic method on the simple 

directed graph (Figure 14) in Bauer et al. [1985; 1991].  
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Figure 14 - Bauer 91 Simple Network Graph 

 
Consider the network graph in Figure 14.  After the construction of the network graph 

(Bauer et al. calls this the cluster interaction graph (CIG)), we form its association 

matrices and apply factor analytic methods to these matrices.  The association matrices 

are basically the pseudo-correlation and pseudo-covariance matrices associated with the 

network graph and signify the strength of relationship between the vertices (nodes).  

Using the correlation matrix, we extract the number of principal components by selecting 

its associated eigenvalues of one or greater; using Kaiser’s criterion [Kaiser, 1960] to 

determine the number of principal components to retain.  The underlying principle for the 

Kaiser criterion is as follows: each observed variable contributes one unit of variance to 

the total variance in the dataset.  Hence, any factor that has an eigenvalue greater than 

one accounts for a greater amount of variance than had been contributed by one variable.  

Additionally, a factor that displays an eigenvalue less than one explains less variance than 

had been contributed by one variable.  Next, we use the covariance matrix and extract the 

eigenvectors, with consideration to the number of principal components retained using 

the correlation matrix, and rotated to a more interpretable structure.  Next we provide the 

procedure in details. 

Before proceeding, one can visually assess that there are three subnetworks for 

the simple graph in Figure 14 (i.e., one of the subnetwork contains nodes 1, 2, and 3; 

another contains nodes 4, 5, and 6 and; the last subnetwork contains nodes 7, 8, and 9).  

We will now verify this visual assessment with the decomposition method.  First we 
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construct the edge incidence matrix for the simple network graph (GSN) as described 

earlier and is shown in Figure 15.   
 

SN

                          e1   e2  e3  e4  e5  e6  e7 e8 e9 e10 e11 e12

N1 1   0    1   0   0   0   0   0   0   1   1   0
N2 1   1    0   0   0   0   0   0   0   0   0   0
N3 0   1    1   0   0   0   0   0   0   0   0   0
N4 0   0    

 ( ) = N5
N6
N7
N8
N9

M G
0   1   1   0   0   0   0   1   0   1

0   0    0   1   0   1   0   0   0   0   0   0
0   0    0   0   1   1   0   0   0   0   0   0
0   0    0   0   0   0   1   1   0   0   1   1
0   0    0   0   0   0   1   0   1   0   0   0
0   0    0   0   0   0   0   1   1   0   0   0

⎛ ⎞
⎜ ⎟
⎜ ⎟
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Figure 15 - Simple Network Graph Edge Incidence Matrix 

 

Next in the process is constructing the pseudo-covariance matrix C = MWMT, 

where W is the edge weighting matrix and can be used to account for the amount of 

information being passed between the nodes.  The W matrix used for the GSN is shown in 

Figure 16. 

 

SN

                            e1   e2  e3  e4 e5  e6  e7 e8  e9 e10 e11 e12

e1 2    0   0    0   0    0  0   0  0    0    0    0
e2 0    2   0   0   0    0  0   0  0    0    0    0
e3 0    0   2   0   0    0  0   0  0
e4
e5
e6

 ( ) = 
e7
e8
e9
e10
e11
e12

W G

  0    0    0
0    0   0   2   0    0  0   0  0    0    0    0
0    0   0   0   2    0  0   0  0    0    0    0
0    0   0   0   0    2  0   0  0    0    0    0
0    0   0   0   0    0  2   0  0    0    0    0
0    0   0   0   0    0  0   2  0    0    0    0
0    0   0   0   0    0  0   0  2    0    0    0
0    0   0   0   0    0  0   0  0    1    0    0
0    0   0   0   0    0  0   0  0    0    1    0
0    0   0   0   0    0  0   0  0    0    0    1
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Figure 16 - Simple Network Graph Edge Weighting Matrix 

 

Hence, the calculated C matrix for the simple network graph follows and is shown in 

Figure 17. 
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SN 

6 2 2 1 0 0 1 0 0
2 4 2 0 0 0 0 0 0
2 2 4 0 0 0 0 0 0
1 0 0 6 2 2 1 0 0

 ( ) = 0 0 0 2 4 2 0 0 0
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1 0 0 1 0 0 6 2 2
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Figure 17 - Simple Network Graph Pseudo-Covariance (C) Matrix 

 
 

Since C in Figure 17 is symmetric (i.e., a matrix is equal to its transpose) and positive 

semidefinite (i.e., all its principal minors ≥ 0), it can be converted to a pseudo-correlation 

matrix R = DTCD, where D is the inverse square root of the diagonal matrix of C and the 

D calculation is shown in Figure 18 with the corresponding simple network graph D 

matrix.   
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Figure 18 - Simple Network Graph D Matrix 
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The derived R matrix is shown in Figure 19.  
 
 

SN

    1 0.408 0.408 0.167     0     0 0.167     0    0
0.402     1   0.5     0     0     0     0     0    0
0.402   0.5     1     0     0     0     0     0    0
0.167     0     0     1 0.408 0.408 0.167     0    0

 ( ) =     0     0     R G 0 0.408     1   0.5     0     0    0
    0     0     0 0.408   0.5    1     0     0    0
0.167     0     0 0.167     0    0     1 0.408 0.408
    0     0     0     0     0    0 0.408     1   0.5
    0     0     0     0     0    0 0.408   0.5    1
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Figure 19 - Simple Network Graph Pseudo-Correlation (R) Matrix 

 
Now that the association matrices have been derived, two decisions have to be 

made from these matrices: 1) assess the dimensionality of the network and 2) interpret the 

factors (subnetwork).  The dimensionality assessment is basically determining how many 

subnetworks are present in the larger network.  The dimensionality assessment is 

accomplished by extracting the principal components from the R matrix and retaining 

only the factors described in Kaiser’s [Kaiser, 1960] criterion (eigenvalues: λ ≥ 1).  

Principal component analysis partitions the data by variance using linear combination of 

‘original’ factors.  Table 8 depicts the results of performing the principal component 

analysis on the pseudo-correlation matrix R. 

Table 8 - Simple Network Graph Extracted Factors 

Factor Eigenvalue Percent of 
Variation 

Cumulative Percent 
of Variation 

1 2.00 22.22 22.22 
2 1.83 20.37 42.59 
3 1.83 20.37 62.96 
4 0.83 9.26 72.22 
5 0.50 5.56 77.78 
6 0.50 5.56 83.33 
7 0.50 5.56 88.89 
8 0.50 5.56 94.44 
9 0.50 5.56 100.00 

 
 

Based on the demonstrated eigenvalues from Table 8, three factors are retained.  

This signifies that there are three subnetworks in the network being decomposed.  This 
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was assessed earlier using visualization in the network graph representation.  We now 

need to find which nodes belong to what subnetworks.  Armed with the knowledge of the 

number of factors to retain, we use this information when we perform a principal 

component analysis on the C matrix.  Table 9 is the initial factor loading result on the 

PCA performed on the C matrix.  This table illustrates the relation of the nodes to the 

factors; the greater the value of the loading, the greater the linear correlation of the nodes 

to the factor.  To make the interpretation simpler, we perform a rotation where a linear 

transformation is performed on the factor solution.   

Table 9 - Simple Network Graph Initial Factor Loadings - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.609 0.000 0.620 
2 -0.373 0.000 0.640 
3 -0.373 0.000 0.640 
4 -0.609 -0.537 -0.310 
5 -0.373 -0.554 -0.320 
6 -0.373 -0.554 -0.320 
7 -0.609 0.537 -0.310 
8 -0.373 0.554 -0.320 
9 -0.373 0.554 -0.320 

 
Not much can be interpreted from the initial factor loading (see Table 9), thus we 

need to perform several common orthogonal rotations [Dillon and Goldstein, 1991:91] 

(e.g., varimax, quartimax, and equamax) to the truncated set of principal component 

matrix and generate a much more meaningful result.  An orthogonal rotation results in 

uncorrelated factors.  Performing different rotations to the initial factor loadings in factor 

analysis aids the assessment of the robustness of the interpretation of the rotation.  The 

rotation causes the pattern to have a “simple structure” where most of the nodes have 

relatively high factor loadings on only one factor, and close to zero on the other factors 

[Harman, 1967:294].  The earliest five criteria for simple structure were developed by 

Thurstone [1947:335].  Before proceeding with the mathematical representation of the 

different orthogonal rotations, it would be beneficial at this time to define the following 

notation from Harman [1967:297]: 

Let 
 A = (air), initial factor loadings matrix 
 B = (bir), rotated factor loadings matrix 
 T = (tdr), orthogonal transformation matrix 



 54

 
∋ B = AT     (3.10) 

 
where  i = 1, 2,..., n: number of variables  
 r = 1, 2,..., m: number of retained factors (principal components) 
 d = 1, 2,..., m: number of original factors, r ≤ d. 
 
Note: The maximum number of principal components = number of variables 
 

The general mathematical expression of the orthogonal rotation methods 

(orthomax), obtained from Jackson [1991:161-163] start with 

 

find T ∋ 
2

4 2

1 1 1

n m m

ir ir
i r r

cb b
m= = =

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑ is maximized   (3.11) 

 
where c is some constant. 

The quartimax rotation [Neuhaus and Wrigley, 1954] method seeks to simplify 

the description of each row, or variable, of the loadings matrix by maximizing the 

variance of squared factor loadings [Harman, 1967].  In the quartimax c = 0 for the 

general orthomax expression.  The rotation using quartimax is shown Table 10.  Notice 

that nodes 4 to 9 are not as easy to interpret as nodes 1 to 3.  The loadings on nodes 4 to 9 

are not as easy to attribute to a specific factor.   

Table 10 - Simple Network Graph Quartimax Rotated Factor Matrix - C 

Node Factor 1 Factor 2 Factor 3 
1 -0.151 0.000 0.855 
2 0.055 0.000 0.739 
3 0.055 0.000 0.739 
4 -0.677 -0.537 0.089 
5 -0.488 -0.554 -0.053 
6 -0.488 -0.554 -0.053 
7 -0.677 0.537 0.089 
8 -0.488 0.554 -0.053 
9 -0.488 0.554 -0.053 

 
The most popular rotation method is the varimax rotation [Kaiser, 1958] which is 

a modification of the quartimax rotation.  In the varimax rotation c = 1 for the general 

orthomax equation.  The rotation using varimax is shown Table 11.  Notice this time the 

varimax rotation created the desired “simple structure” (i.e., heavy loading on one factor 

per node).  In contrast to some other types of rotations (e.g., quartimax or equamax), a 
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varimax rotation seeks to maximize the variance of a column of the factor pattern matrix 

of the retained factors.   

Table 11 - Simple Network Graph Varimax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.098 -0.098 0.857 
2 0.046 0.046 0.738 
3 0.046 0.046 0.738 
4 -0.098 -0.857 0.098 
5 0.046 -0.738 -0.046 
6 0.046 -0.738 -0.046 
7 -0.857 -0.098 0.098 
8 -0.738 0.046 -0.046 
9 -0.738 0.046 -0.046 

 
 

The equamax orthogonal rotation [Saunders, 1961] seeks to maximize a weighted 

sum of the varimax and quartimax criteria, where the simple structure is concerned with 

simultaneous within variables (rows) as well within factors (columns) variance.  In the 

above general orthomax expression c = n/2.  Although the varimax rotation has already 

demonstrated a desirable “simple structure,” for completeness, Table 12 depicts the 

rotated factor of the initial factor loading matrix for the covariance matrix (C) using 

equamax.  Note that the rotated factor loadings are identical to the varimax rotated 

matrix. 

Table 12 - Simple Network Graph Equamax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.098 -0.098 0.857 
2 0.046 0.046 0.738 
3 0.046 0.046 0.738 
4 -0.098 -0.857 0.098 
5 0.046 -0.738 -0.046 
6 0.046 -0.738 -0.046 
7 -0.857 -0.098 0.098 
8 -0.738 0.046 -0.046 
9 -0.738 0.046 -0.046 

 
 

Typically, part of the factor analysis assessment is to evaluate how the nodes in 

the factors are related and thus producing a “naming” convention for the grouping, also 

known as the interpretability criterion.  In our case, we only need to assess which nodes 
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belong to what factor, since the graph is fairly generic and no specific naming were 

assigned to the nodes initially. 

After examining Tables 11 and 12, we see: nodes 1, 2, and 3 load on Factor 3, 

nodes 4, 5, and 6 load on Factor 1, and that nodes 7, 8, and 9 load on Factor 2.  This 

confirms the initial visual assessment from earlier on which nodes should cluster together 

using the varimax and/or equamax methods for rotation. 

3.5 Determining number of replications based on precision accuracy β 

In the event that the number of replications is not yet determined for a simulation model, 

the analyst needs to determine the proper number of replications to use in order to 

properly gather the desired statistics.  Instead of running several hundreds, or thousands, 

of replications without knowing the exact amount of replications to run or just by 

guessing, one could get an approximate number of replications by specifying a precision 

for the output(s) of interest.  Fixing the number of replications gives little to no control 

over the confidence interval half-length [Law, 2006:500]; therefore, an analytical 

procedure to determine the number of replications for estimating the mean with a desired 

error of precision is performed.  One could define a specified confidence interval half 

width percent variation as applied in Faas [2003].  Another method is to obtain an 

absolute error of at most β with a probability of approximately 1-α and use the equation 

below [Law, 2006:501, Eqn 9.2] 

 
 

2
*

1,1 / 2
( )( ) min :a i

S nn i n t
iαβ β− −

⎧ ⎫⎪ ⎪= ≥ ≤⎨ ⎬
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      (3.12) 

 
 

where  * ( )an β : total number of replications required to obtain β 

 i: initial number of replications 

 β: absolute error > 0  
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 t: t-statistic 

 α: type 1 error 

 n: fixed number of replications 

 S2(n): population variance estimate. 

 

Note that the β used here is not the same as the regression coefficients discussed in 

Section 3.6 for regression and MetaSim.  In keeping with the Law [2003] text and 

conventional regression coefficient parameter representations, we will leave both as β. 

To construct a confidence interval for multiple measures of performance where 

several measures are of interest simultaneously, regardless if whether or not the intervals, 

Is’s, are independent, we need to build a Bonferroni general inequality (Law, 2006:537, 

Eqn 9.11) presented in the equation below 

 
 

1
(   1, 2,..., ) 1

k

s s s
s

P I s kμ α
=

∈ ∀ = ≥ − ∑     (3.13) 

 

where  sμ : measure of performance 

 k: total number of different measures of performance (output of interest) 

 α: type 1 error. 

 The Bonferroni method allows for several confidence intervals to be constructed 

while still ensuring an overall confidence is achieved.  This method operates by 

increasing the confidence level of the individual comparisons such that the resultant 

comparison has at least the specified confidence level.  Thus, to achieve simultaneous 

multiple interval estimates with an overall 1-α confidence, one can construct each 

interval with confidence coefficient 1-α/k and the above inequality ensures that the 

overall confidence is at least 1-α. 
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3.6 Aggregation Methodologies 

Once the candidate submodel(s) for aggregation have been identified, Step 2 will 

implement different aggregation methods, vice using the Direct Method, such as 

replacing the output data of the lower-level models with: 

(1) the mean,  

(2) feeding the Normal Distribution with the data’s mean and standard deviation 

(using the sampling distribution of Y ),  

(3) the control variate technique mean,  

(4) feeding the Normal Distribution with the control variate mean and standard 

deviation (using the sampling distribution of Y ), 

(5) replacing the output data with their fitted distribution, 

(6) building a regression model representation of the identified submodel; 

(7) building an Artificial Neural Network (ANN) representation of the identified 

submodel, 

(8) building a MetaSim representation of the identified submodel. 

 The Direct Method is considered the truth model (standard) in which the eight 

alternatives are compared to.  This method takes all the actual outputs from the 

conventional lower-level simulation model and passes them to the next level model as 

inputs.  The data/simulation model accessibility, in terms of having access and time to 

set-up and complete additional simulation runs or not, will dictate which method will 

work best as the type of aggregation method the analyst would implement.  Figure 20 

provides a straightforward guideline on how to decide which method(s) to use with the 

hierarchical simulation model’s input/output data.  As indicated in Figure 20, before 

implementing any of the specific aggregation method(s), the analyst needs to recognize 

the accessibility of future (or additional) simulation data.  If the lower-level simulation 

model/data is accessible and more runs can be accomplished, then as a different 

representation of that simulation model output, any of the methods described in Methods 

1 through 5, or 8 can be used.  On the other hand, if the access to future simulation 
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data/model is limited or unattainable, then it is recommended that Methods 6 through 8 

be built in order to still generate representative lower-level model predictions for 

unforeseen input setting changes.  

 

 
Figure 20 - Aggregation Methods Usage Guideline 

 

 We now discuss the eight alternate aggregation methods to get a better 

understanding of how to implement the different methodologies used for aggregation.  It 

is important to keep in mind that for all the alternate aggregation methods discussed, the 

simplifying assumption is that the multiple outputs of the lower-levels are independent of 

each other.  In situations when considering multiple outputs, bear in mind the possibility 

of dependence between outputs and to possibly capture the outputs jointly for input into 

the higher-level model.  For instance, for two lower-level outputs, an input into the 

higher-level model in Method 2 would result in a bivariate normal parameterized by two 

means and a 2x2 covariance matrix.  At the time of finding this dependency 

consideration, the effort at this time is beyond the extent of this research, but should be 

addressed in future research.   
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3.6.1 Method 1 – Mean ( ilY ) 

This method is the simplest and the most common [Oracle, 2006; Zeigler, 2000; 

Cassandras et al., 2000] of all the suggested aggregation methods.  It takes the average of 

the lower-level output, per type (i), from each replication (j) and uses these averages as 

the per replication input by scenario (l) into the next higher level.  A simple diagram of 

this method is illustrated in Figure 21.   
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Figure 21 - Method 1 Aggregation Diagram 

 

The point estimator of
iYμ , which is the average per replication and per scenario for each 

output Yi, is calculated as follows: 

 

=1 1

1 1 =   ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
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⎝ ⎠
∑ ∑                                (3.14) 

where  i: output type, i = 1,...,I,  

 j: replication number, j = 1,...,J,  

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i 

 l: scenario number, l = 1,...,L. 
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3.6.2 Method 2 – Normal ( , il
sY
J

) 

Method 2 assumes a normal distribution for the outputs generated at the lower-level 

model.  In order to use this assumption we need to make sure that we meet the conditions 

of the central limit theorem, indicating the normal distribution is a suitable approximation 

for the distribution of the data.  Even if the underlying distribution of  iY are not 

normally distributed, it may have a sampling distribution that is approximately normal if 

the sample size (J) is large (usually greater than 30) [Wackerly et al., 1996:303-310].  

The standard error s
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

of ilY  [Wackerly et al., 1996:326] is the sample analog of the 

square root of the following  
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where  i: output type, i = 1,..., I 

 j: replication number, j = 1,..., J 

 k: observation number, k = 1,..., Ki, Ki = number of individuals in output type i 

 l: scenario number, l = 1,..., L 

 l 2
ilσ : variance of the output type i outputs across the j replications per l scenarios 

 s: sample standard deviation. 

3.6.3 Method 3 – Control Variate (CV) Technique Mean ( l l( )iYμ β ) 

A variance reduction technique called controlled variates is used for this method.  Control 

variates is a regression technique that seeks to exploit any correlation between random 

variates and the output of interest in a simulation model.  In this method we examine the 

effects of using the control variate mean as opposed to the sample mean of Method 1.  

The purpose is to obtain an estimator of 
iYμ  with less variance than Method 1 [Bauer and 
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Wilson, 1993:70].  For other aspects and the complete derivation of the control variate 

technique the reader is referred to Bednar [2005], Nelson [1990], or Wilson [1984].  Note 

that we follow the convention used in Bednar [2005] for the source of the equations.  The 

point estimator of 
iYμ  is estimated by  

 

l l( ) l( )
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ijlY
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μ β β
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∀∑ .                       (3.16) 

Also, β are the coefficients estimated by 
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where  J: is the sample size (i.e., number of replications in each scenario) 

 X: random variates (often times referred to as controls). 

  

 For this method, the analyst/simulationist can choose to “standardize” the controls 

[Bauer and Wilson, 1993] as the inputs into the CV technique or proceed as usual.  The 

usual procedure for the controls is to subtract the known mean (typically user-given) 

from the simulation output collected from a specific control.  However, when using the 

Bauer and Wilson [1993] controls standardization, the number of occurrence and the 

user-given standard deviation for a specific control are taken into consideration.  It is 

recommended to try both and determine which works best for the simulation at hand. 

3.6.4 Method 4 - l l( ) CV 11 Normal  ( , )
i iY Y sεμ β μ σ∼  

This method is an extension of Method 3 and uses the CV-mean along with its standard 

deviation as the parameters of the normal distribution.  For this method, in order to 

determine which random variate(s) to keep in the model (i.e., control variate selection 
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routine), a simplification technique like the sequential procedure needs to be 

implemented such as forward selection, backward selection, or step-wise regression 

[Dillon and Goldstein, 1984:235-242, Jackson, 1991:269].  In addition, a p-value for the 

enter/leave criteria needs to be to established in order to choose the subset controls q of 

the m collected controls where q ≤ m.  The value σε represents the variability in the mean 

of the output (Y) given we have accounted for the q controlled variables (X) and is 

estimated as  

l
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where  J: is the sample size  

 Q: number of significant random variates.  

 

On the other hand, s11 represents the variance of the intercept of the regression equation 

and is estimated as follows,  
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where  J: is the sample size 

 Q: number of significant random variates. 

3.6.5 Method 5 – Distribution Fitting 

Distribution fitting is the process of choosing the statistical distribution which best fits to 

a dataset generated by some random process.  In general, it is necessary to represent the 

source of randomness by a probability distribution (versus just its mean) in the simulation 

model [Law, 2006:238].  The idea for this technique is to “fit” a theoretical distribution, 

rather than an empirical distribution, to the lower-level model output.  If a theoretical 

distribution can be found that fits the data that we are trying to aggregate reasonably well, 
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then this is most generally preferred to using an empirical distribution [Law, 2006:279-

280].  In cases where a theoretical distribution can never take on a value b, then it might 

be advantageous to truncate or shift the fitted theoretical distribution to gain a more 

realistic fit [Law, 2006:359-361].   

 This method uses all the data of each lower-level output and fits a distribution 

using Arena®’s Input Analyzer.  The per scenario distribution of the output data is in 

turn used as the distribution from which the next higher-level model will sample its input 

from.  Matlab’s (R2007a) distribution fitting functions and ExpertFit® (XFIT 26) can 

also used to fit the data, but the suggested distribution functions from the Input Analyzer 

tend to be more representative of the simulation data used.  In our case, this could 

possibly be because the simulation outputs being fitted are a product of an Arena 

simulation.  Thus, it is generally recommended to re-generate the data using the 

suggested distribution, along with its parameter(s), and confirm that the data that are 

being randomly generated closely follows the output that is being fitted.  Basically, fit the 

data, collect the suggested distribution, re-generate the data using the suggested 

distribution fit, and compare the original output to the regenerated data to verify 

correctness of suggested theoretical distribution. 

3.6.6 Method 6 – Regression 

This method utilizes the ordinary least squares approach which minimizes the sum of 

squared deviations (residuals) [Draper and Smith, 1998:23].  For supplemental details on 

the regression technique, the reader is referred to Draper and Smith [1998] and Dillon 

and Goldstein [1984].  In this method we use the per-scenario d input (X), where X is n x 

d, and c output variables (Y) of the lower-level model to build its corresponding 

regression model.  One regression equation is built for each output of the lower-level 

model, thus the entries into the Y matrix will change depending on the current output and 

the operation consists of c separate regression computations.  For this method, in order to 

determine which variable to keep in the model, a simplification technique like the 

sequential procedure needs to be implemented such as forward selection, backward 

selection, or step-wise regression [Dillon and Goldstein, 1984:235-242, Jackson, 
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1991:269].  This step is particularly important whenever the dimensionality (i.e., size of 

d) of the input data is large.  In addition, a p-value for the enter/leave criteria needs to be 

to established in order to choose the subset controls r of the d collected inputs where r ≤ 

d.  The equation for the regression in matrix form is as follows 

 

Y = Xβ + ε                        (3.20) 

where  Y: is a (n x 1) column vector of observations on the dependent output Y 

 X: is a (n x d) vector of independent input predictors 

β: is a (d x 1) column vector of unknown parameters called partial regression 

coefficients or weights 

ε: is a (n x 1) column vector of errors or residuals and in vector terms we can 

write ε ∼ Ν(0, Iσ2), where E(ε) = 0, V(ε) = Iσ2. 

 

The least squares estimate of the β is the value b and is calculated as follows 

 

( ) 1T T
train train train train trainb = X X X Y

−
                        (3.21) 

 

where trainX is the training data input and trainY is the training data output.  Note that a 

training dataset needs to be predefined to obtain the b estimates in equation (3.21) to 

apply to the testing data in order to obtain the testing data predicted values.  This simply 

means that we derive our b estimates using a different set of data for what we are trying 

to predict.  Thus, the predicted value (as it is applied to the testing dataset) is given by 

 

  l
test test trainX bY =     (3.22) 

 

where l testY is the regression test prediction per output type i, testX is the new (test) data 

input and trainb is the least squares estimate of the β derived from the training data.  A 
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more detailed discussion on how to separate the data into training and testing datasets, 

used in this method and Method 7, will be covered in Section 3.7.   

 Note that the difference between the regression in this method and Methods 3 and 

4 lies in the predictor variables used.  In Methods 3 and 4 the predictor variables are the 

random variates collected from the simulation model, whereas the predictor variables 

used in this method (Method 6) are the simulation model inputs. 

 An extension to the regression method is proposed, similar to the concept used in 

Method 2, where we assume a normal distribution and generate regression predictions 

based on  

 

l l l'
test test test( , ( ))Y Normal Y Var Y=     (3.23) 

 

where l testY from equation (3.22) is the value predicted at Xtest by the regression equation 

and Var( l testY ) is given by 

 

l ( ) 1' ' 2
test test train train test( ) X X X XVar Y σ

−
= .   (3.24) 

 

The value of σ2 in equation (3.24) is typically unknown an is thereby estimated by s2 

using [Dillon and Goldstein, 1984:226] 

 

( ) ( )'
train train train train train train2 Y X b Y X b

s
n p

− −
=

−
   (3.25) 

 

where  n: total of observation (or replication runs in the simulation) 

p: total number of β parameters that need to be estimated, including the intercept                               

β0.  

 

The goal is to provide the users/analyst with a set of predictions from the normal 

distribution with parameters estimated from previous simulation runs.  Instead of 
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providing one estimate for one given set of design variables (new simulation inputs), our 

aim is to generate the distribution of the true simulation output rather than just a single 

prediction.  This concept of extending the regression predictions is depicted in Figure 22.   

 

 
Figure 22 - Mean vs. Distribution Predictions for the Regression Method 

 

An extension of this method is discussed in Section 3.6.8 when we include control 

variables in the input matrix. 

3.6.7 Method 7 – Artificial Neural Network (ANN) 

The main rationale for using ANNs in the prediction process is its ability to generalize to 

data that have not been seen.  In contrast to linear models, nonlinear models such as 

ANNs present better predictive power [Sinclair et al., 1995].  In addition, ANNs have the 

capability of making effective use of sparse data and limited computational resources 

[Sinclair et al., 1995].  Here the inputs of the conventional simulation model are used as 

neural network training inputs.  It is also possible to include the random controls 

collected from the simulation in the CV technique discussed in Methods 3 and 4.  The 

neural network model is then used to predict the outputs of the simulation model, which 

in turn, are used as inputs into the next higher-level.  The same data development process 

in Method 6 should be used for the ANN method, where the entire available simulation 

dataset is divided between training and testing.  We utilize three types of neural networks 

in order to build the prediction metamodel: FANN, RBF, and the generalized regression 

neural network (GRNN), which are the typical ANN prediction problem tools used in the 

field [StatSoft, 2007].   
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 A neural network learns by updating its weights according to a learning rule that 

is used to train it.  During the learning period, exemplars are introduced to the network in 

input-output pairs.  For each exemplar, the network calculates the predicted outputs 

according to the set of inputs.  Once enough exemplars have been fed to the network one 

or more times, it is expected that the network can predict unknown outputs for new input 

scenarios.  The topology of the ANN (e.g., number of hidden layers and the number of 

nodes in each hidden layer) and the activation function used are important factors that 

influence the learning capabilities of the network.  Since the rules of building ANN 

models are more informal, the construction of effective ANN models becomes more of an 

art than a science.  Hence, several different network architectures could be examined 

during the analysis stage. 

 The level of detail from which the ANN will be compared to depends on the 

output type.  If possible, the ANN should be trained down to the noise level (i.e., each 

individual output of the lower-level model) [Kilmer, 1994].  However, if there are 

multiple outputs of interest and the number of individual output varies, then the average 

of the different outputs might need to be used for training the ANN in order to build one 

neural network for all outputs simultaneously.  Unlike the regression method, one ANN 

model can be built for multiple outputs.  The ANN with the smallest root mean square 

error (RMSE) will be considered the best neural network representation of the simulation 

model and will be used as the ANN metamodel of the lower-level simulation models.  

RMSE per output is calculated as follows 

 

l
jj

2
NNDM

1

1RMSE = ( )
J

ii
j

Y Y
J =

−∑         (3.26) 

 

where  J: number of replications across all scenarios 

 DMiY : Direct Method output 

 l
NNiY : neural network predicted output. 
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 The different ANN methods that will be utilized as the aggregation method of the 

lower-level model(s) are discussed next.  Note that the input into the ANN models that 

will be investigated will be in two forms: 1) only the actual simulation inputs are used or 

2) in addition to the simulation inputs, consider adding the random controls collected 

during the CV technique (used in Methods 3 and 4) as part of the input data.  For 

example, in the first case, let the n x d input matrix be X = (x1, x2,…, xn)T where d is the 

dimension of the actual simulation input.  Thus, for d = 2, this implies that there are two 

simulation inputs per n replications and the form of the input matrix per scenario for the 

first case is given by 

11 12

21 22

1 2

 = 
... ...

n n

x x
x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X     (3.27) 

 

where x11 is input 1 of replication 1, x12 is input 2 of replication 1, …, xn1 is input 1 of the 

nth replication, and xn2 is input 2 of the nth replication.  For the second case, adding the 

random controls to the first case, the form of the input matrix per scenario for the second 

case is given by 

 

11 12 11 12 1

21 22 21 22 2

1 2 1 2

...

...
 = 

... ... ... ... ... ...
...

d

d

n n n n nd

x x c c c
x x c c c

x x c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

X    (3.28) 

 

where the first two columns are defined the same way as the first case; c11 is the first 

control collected for replication 1, c12 is the second control collected for replication 1, c1d 

is the last control collected for replication 1, and cnd is the last control collected for nth 

replication.  The dimensionality of the input into the ANN for the second case is given by 

 

input  = x cd d d+      (3.29) 
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where dx is the dimension of the simulation inputs and dc is the dimension of the random 

controls (number of random controls collected for the simulation).  Thus, for the given 

example in the second case, the dimension of the input data is two plus the dimension of 

the random controls.  As a result of these input set considerations, two sets of input will 

be considered to train and test the ANN for each of the ANN described next. 

Feed-forward Artificial Neural Network (FANN) 

FANN is the most popular and commonly employed neural network [Sinclair et al., 

1995].  Other names for the FANN are “multi-layer perceptrons” (MLPs) and back-

propagation (due to its learning algorithm) networks.  Back-propagation networks are 

based on the generalized delta algorithm, which provides a method of updating the 

weights so that the errors are minimized [Bishop, 1995:140-148].  FANNs have the 

property that there are no feedback loops in the network; forward propagation of function 

(input) signals and back-propagation of error signals that stem from the output neuron 

[Haykin, 1999].  A sample network diagram for a two-layer (counts layers of adaptive 

weights and does not include the input unit as a part of the layer count) FANN is depicted 

in Figure 23.  The network consists of n x d inputs, one or more hidden units of 

computation nodes, M, and c sets of n x 1 output units of computation nodes.  Given a set 

of n x d input matrix X = (x1, x2,…, xn)T and a target or output vector y = (y1, y2,…, yn)T 

whose elements yi’s are the outputs corresponding to the input vectors xi, i = 1, 2,…, n 

(i.e., D = {(xi, yi): xi ∈ ℜd, yi ∈ ℜ, i = 1,…n }),  the goal is to build a metamodel 

transforming a d-dimensional input space into a 1-dimensional target value based on the 

simulation data D.   



 71

 
Figure 23 - FANN model topology [Bishop, 1995:117] 

 
 

The analytic function for the kth output unit corresponding to Figure 23, taken directly 

from Bishop [1995:118-119], is as follows 

 

(2) (1)

0 0

M d

k kj ji i
j i

y g w g w x
= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑�     (3.30) 

 

where  (1)
jiw : is a weight in the first layer, starting from input i to hidden unit j, 

 (2)
kjw : is a weight in the second layer, starting from hidden unit j to output unit k, 

( )⋅�g : is the activation function of the output units (typically non-linear for 

classification problems and linear for prediction problems), 

( )⋅g : is the hidden units’ activation function (need not be the same as ( )⋅�g  and is       

typically non-linear). 

  

 FANNs often have one or more sigmoid activation function in hidden layers, but 

generally, a two-layer FANN (given adequate number of M nodes in the single hidden 

layer) are universal approximators (Hornik et al., 1989).  Suggested number of M value 

for the neurodes are:  M = 2c-1 where c is the number of outputs that need to be predicted 
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[Looney, 1997:90-91] or M = d [Nahas et al., 1992] as described for Figure 23.  Typical 

activation functions used in FANNs are the logistic function or the hyperbolic tangent 

function [Haykin, 1999:168-169].  This is typically followed by an output of linear 

activation neurons for prediction problems.  The hidden layers with non-linear activation 

functions permit the network to learn linear and non-linear relationships between the 

inputs and outputs [Haykin, 1999:157].   

Radial Basis Function (RBF) Neural Network  

RBF is a class of neural network classification which can handle large-scale practical 

problems.  Also, it possesses the attractive property of being able to process the linearity 

and non-linearity in the model that can be handled separately, which makes it a very 

flexible modeling technique [Shin et al., 2002].  Further, it has been shown to have a very 

significant mathematical property of best local approximation, which is not shared by 

multi-layered perceptrons [Girosi and Poggio, 1990].  Radial basis functions are 

embedded into a two-layer feed-forward neural network as depicted in Figure 24.  In 

between the inputs and outputs there are M layers of processing units called hidden units 

(also known as neurodes).  Each of these M hidden units implements a non-linear transfer 

function called a basis function. 

 

 
Figure 24 - RBF model topology (slightly modified for clarity) [Bishop, 1995:169] 
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Both the RBF and FANN are examples of non-linear feed-forward networks and are both 

universal approximators.  However, RBF networks differ from FANNs in some primary 

aspects [Haykin, 1999:293; Bishop, 1995:182-183]: 

 in its most basic form, the RBF network contains one hidden layer, as opposed 
to one or more hidden layers for the FANNs; 

 
 generally the hidden layer of an RBF network is non-linear, while its output 

layer is linear; however, the hidden and output layers of the FANN are 
typically all non-linear when used as a pattern classifier; for non-linear 
regression problems, the output layer is preferred to be linear ; 

 
 the activation function of the hidden layer in an RBF network calculates the 

Euclidean distance between the input signal vector and parameter vector of 
the network, as opposed to the activation function of a multilayer perceptron 
where it computes the inner product between the input signal vector and the 
pertinent synaptic weight vector; 

 the FANN parameters are typically determined all at the same time as part of 
the single global training which involves supervised training; on the other 
hand, RBF networks usually is trained in two parts: first, the basis functions 
are determined using only the input data (unsupervised), and the second-layer 
weights are determined using the fast linear supervised methods; 

 
 RBF networks are good local approximators to input-output mappings, while 

FANNs are good global approximators. 
 

Things to consider when building the structure for the RBF will include:   choosing the 

proper number of neurodes, the width of the spread of the activation function and the 

choice of the activation function.  The RBF network, taken directly from Bishop 

[1995:168], is formally described mathematically as  

 
    

   ( )
0 0

( ) ( / )
M M

k kj j kj j j j
j j

y w wϕ ϕ σ
= =

= = −∑ ∑x x x μ    (3.31) 

 
 
where x ∈ ℜd is the input vector with elements xi, μj ∈ ℜd is the jth basis function center 

with elements μji, the norm ⋅  is the Euclidean distance, wkj’s are the weights, and the 
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σj’s are the activation (basis) function widths.  For the structure of the hidden layer in 

terms of the number of neurodes, there are two ways to accomplish this task: 1) in the 

generalized RBF, the number of neurodes M is smaller than the number of n training 

samples (i.e., M < n); 2) in contrast, in the regularization RBF network, the number of 

neurodes is exactly the same as the number of input nodes (i.e., M = n) [Haykin, 

1999:281].  It is common practice to use a global width σ = σj, for j = 1, 2,..., M for the 

spread of the radial basis activation functions [Shin et al., 2002].  A couple of heuristics 

to use for determining the spread value are: 1) σ = 1/(2M)1/n [Looney, 1997:99] and 

2) 0.25 0.75d dσ∗ ≤ ≤ ∗  [Shin and Goel, 2000:569].  Several functions ϕ(.) have 

been used as activation functions for RBF networks and are listed in Table 13.   

 

Table 13 - Some RBF activation function choices [Shin and Park 2000:4] 
Basis Function ( ) ( / )rϕ ϕ σ= − μx  
Gaussian exp(-r2/2) 
Thin plate spline r2 log r 
Inverse multiquadratic c/(r2 + c2)-1/2 
Hardy multiquadratic (r2 + c2)1/2/c 
Cubic r3 

 

 

In pattern classification and prediction (approximation) applications the Gaussian 

function is typically used as the activation function [Shin et al., 2002; Schalkoff, 

1997:338] and is given by 
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μ
.     (3.32) 

Generalized Regression Neural Network (GRNN) 

GRNN is coined by Specht [1991] in the context of neural network as a representation of 

the Nadaraya-Watson kernel regression; also known as Parzen-Window in the artificial 

intelligence and engineering domain.  Specht [1991] claims that one disadvantage of the 
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FANN is its rate of convergence to the desired solution can take a long time.  As an 

alternative to the FANN, the GRNN was derived which can also be used for estimation of 

continuous variables using a “one-pass” learning algorithm [Specht, 1991].  A significant 

advantage of GRNN over standard nonlinear multiple regression is that a hypothesized 

model need not be stipulated in advance [Hansen and Meservy, 1996:319].  A 

disadvantage of the GRNN as noted by Specht [1991] is the substantial amount of 

calculation required to evaluate new exemplars.  GRNNs are normalized RBF networks 

which estimates a linear or non-linear regression surface on the input variables [Bishop, 

1995:179] and is depicted in Figure 25.   

 
Figure 25 - GRNN model topology (modified for variable consistency) [Amiri et al., 2007:Fig 2] 

  

 GRNN computes the most likely value for the output y given only the input 

vectors x.  Particularly, rather than an assumed form of the regression function, GRNN 

uses the joint probability density function (pdf) of x and y denoted as p(x, y).  The 

problem can be thought of as that of estimating an unknown function f: x ∈ ℜd → y ∈ ℜ 

(assume for now a d-dimension input with a single output for simplicity) for some finite 

set of input data D = {(xi, yi): xi ∈ ℜd, yi ∈ ℜ, i = 1,…n } where n is the number of data 

points (exemplars).  Given the joint pdf, the GRNN generates an estimate lf for f and is 

given by  
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The numerator in equation (3.33) signifies that the best estimate of y is the mean of the 

marginal distribution while the denominator is the scaling term that ensures the marginal 

distribution integrates to one.  Typically, the joint pdf p(x, y) is unknown, thus it is 

estimated from the training sample data D using a nonparametric estimator known as 

Parzen-Rosenblatt density estimator [Bishop, 1995:294].  The GRNN consists of 4 layers 

[Amiri et al., 2007; Niu et al., 2005]: 

1) The input layer that is fully connected to the pattern layer;  

2) The pattern layer (also called latent regression layer) which has one neuron for 

each pattern that produce a weight based upon how close the input vector is to the 

associated pattern; the pattern function is expressed as 

  

( ) ( )
2

T2
2exp ,

2
  i

i i i i
Dh D x xμ μ
σ

⎛ ⎞−
= = − −⎜ ⎟

⎝ ⎠
  (3.34) 

 

where ih is the output of pattern unit i, 2
iD is the squared distance between the new 

input pattern x and μi is each of the input training vector, σ is the smoothing 

parameter that controls the size of the receptive region; 

3)  The summation layer includes two units: the first computes the weighted sum 

of the hidden layer outputs, where the weight value is just the value of yi of each 

training sample; and the second unit (regarded as the denominator unit) is the 

summation of the exponential terms and has weights equal to one; 

4)  To get an estimation of y, the output layer then divides the two units from the 

summation layer. 

After several mathematical manipulations of equation (3.33) (see Bishop 

[1995:177-179] and Haykin [1999:294-298]) the input-output model for the GRNN 

yields the following (also known as the Nadaraya-Watson regression estimator) 
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where yi and μi are the ith output and input training vectors, respectively; and x is the 

presented (test) input vector.  The consideration of only the smoothing parameter σ of the 

basis function is sufficient for determining the network; the larger the value of σ, the 

smoother the function approximation and approaches the mean of the training set outputs; 

and the smaller σ is, the function approximation approaches the output pattern of the 

training set and may not generalize as well for future inputs [Hansen and Masservy, 

1996].  As for the type of basis function, a widely used kernel (basis) is the multivariate 

Gaussian distribution [Haykin, 1999:297].  With the use of a common smoothing 

parameter and centering the kernel on the training data point μi, the equation from Haykin 

[1999:298] is given by 
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3.6.8 Method 8 – Meta Simulation (MetaSim) 

MetaSim is a novel technique where the random variates in the control variate (CV) 

technique (used in Methods 3 and 4) are replaced with an estimate using the Normal 

distribution.  This comes from the use of the Central Limit Theorem (CLT) and the 

convergence concept.  From the CLT, with a few restrictions, the normal distribution can 

be used for general approximations for various types of distributions if the sample n is 

large enough [Casella and Berger, 2002:102]; that is, if X is distributed other than the 
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Normal distribution, then Normal 2X  ( , )dist
n μ σ→∞⎯⎯⎯→ .  Formally restating the CLT 

[Casella and Berger, 2002:236] 

 Central Limit Theorem:  Let X1, X2, ... Xn be a sequence of n independent, 
and identically distributed (iid) random variables whose moment 
generating functions (mgfs) exist in a neighborhood of 0 (that is, ( )

iXM t  
exists for |t |< h, for some positive h).  Let E(Xi) = μ and Var(Xi) = σ2 > 0.  
(Both μ and σ2 are finite since the mgf exists).  Define
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that is, ( ) /nn X μ σ− has a limiting standard normal distribution. 

The proof using the properties of the mgfs is provided in Casella and Berger [2002:237-

238].  Note the assumption of finite variance and independence.  The finite variance 

assumption is essentially necessary for the convergence to normality and cannot be 

eliminated [Casella and Berger, 2002:237].   

 The idea is to replace the entire simulation model, at least the portion that is being 

aggregated, with a prediction model (MetaSim) that is based on the use of the CLT along 

with a collection of fewer random variates which are determined to be “important”.  As 

previously described, the “important” variables are determined using a statistical 

technique called step-wise regression [Dillon and Goldstein, 1984:239-242].  A visual 

representation of the process will now be illustrated in order to better understand this 

technique.  Consider for instance the flow of a notional “full” model in Figure 26.  In 

order to capture the two outputs, the entities flow through the entire path for some 

duration (simulation run length) and are repeated according to the number of specified 

simulation replications (n). 
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Figure 26 - Full Model Flow Example 

 

The goal of the MetaSim is to exploit the random variates in the full model and build a 

representation of the same model using fewer random variates as depicted in Figure 27 

and predict the desired outputs within some error tolerance.     

 

 
Figure 27 - MetaSim Model Flow Example 

 

As depicted in the sample flow diagram in Figure 26, in order to capture the two 

simulation outputs, the entities flow through eleven random variates (rv).  After 

performing the control variable selection of step-wise regression on the eleven random 

variates, we observe that a total of only seven random variates were necessary to build a 

new prediction model, which are the solid boxes in Figure 27.   
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 To fully understand how to implement the new proposed metamodeling 

technique, we now describe the general MetaSim algorithm (the pseudo-code for the 

MetaSim is located in Appendix E).  Note that since this technique uses an embedded 

regression method on the random variates, the algorithm described next is for treatment 

of one output at a time for each scenario.  Since the set-up is per scenario, the controls 

considered at this time are that of the random controls only since the settings of the 

simulation input X will not change within a scenario.   

MetaSim Algorithm 

Step 0.1:  Collect raw data from simulation model for use in the random variate 

regression (i.e., using the control variate technique).  Assume data from the simulation 

model input is in the form n x d where n is the data sample size (number of simulation 

replications) and d is the dimension of the data (i.e., the controls are the number of 

random variates collected).  For the target data (i.e., response is the actual simulation 

model output) the data from the simulation is in the form n x 1. 

Step 0.2:  Perform regression on the controls.  Specify the response, controls and α-level 

for the regression.   

Step 1:  Collect observations from the raw data and control variate technique for input 

into the MetaSim.   

 1a:  Collect user-specified mean used in the simulation in the form 1 x d.  For 

every random variate collected from the simulation, calculate the expected value and 

standard deviation for those specific work or routing variables [Bauer and Wilson, 1993] 

(i.e., given a distribution in a certain process or decide module, calculate the implicit user 

input mean (
acμ ) and standard deviation).  In order to calculate the means and standard 

deviation for several distributions, see Law [2006:282-309]. 

 1b:  For each controls, collect the following per replication: the number of 

occurrences (count), the average value of the controls ( c ), and its standard deviation (s). 

 1c:  From the control variate technique, collect: the intercept β0, the β weights and 

the corresponding indices of “in” and “out” variables in the form 1 x d.  The “in” variable 
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indices will ensure that the weights are being applied to only the appropriate “in” 

controls.   

Step 2:  Perform MetaSim technique. 

 

The equation for the MetaSim in matrix form is as follows 

 

l [ ]  1 CY = # β                       (3.38) 

where  lY : is a (1 x 1) predicted output of the MetaSim 

 1: is a (n x 1) column of ones representing the intercept term β0 

C: is a (n x d) vector of d potential random controls C1,C2,…,Cd from n 

replications  

β: is a ((1+d) x 1) column vector of unknown parameters β0, β1,…, βd where β0 is 

called the intercept term, and β1,…, βd are the regression coefficients or weights 

associated with the random controls. 

The vector of random controls C is the value c calculated as follows 

 

( ) for  = 1,2,...,c =
a

a cc a dμ−                         (3.39) 

and ac is estimated by 

 

Normal ,= a
a a

a

sc c
count

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

      (3.40) 

 

where the parameters for the normal distribution are estimated from the average of each 

individual collected control ac .  Note that subtracting the user-input mean, 
acμ , from the 

collected controls inside the MetaSim algorithm is only necessary if this part of the 

calculation haven’t already been previously performed. 
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The least squares estimate of the β is the value b and is calculated as follows 

 

( ) 1T T
train train train train trainb = C C C Y

−
                        (3.41) 

 

where trainC is the training data random control input and trainY is the training data output.  

Note that a training dataset needs to be predefined to obtain the b estimates in equation 

(3.41) to apply to the testing data in order to obtain the testing data predicted values.  

Thus, the predicted value (as it is applied to the testing dataset) is given by 

 

  l
test 0 test train+ C bY β=      (3.42) 

 

where l testY is the MetaSim prediction, testC is the new (test) data input and trainb is the 

least squares estimate of the β derived from the control variate technique performed on 

the training data.  Note that the simulation input data X can be included as part of the 

controls when building a MetaSim using data from all the scenarios since the settings of 

the input data changes accordingly by scenario.  This set-up should be considered when 

trying to build a model that can predict new input settings; that is, new model inputs that 

have not been previously simulated.  For this set-up, the form of the regression prediction 

will be given by 

 

l
test 0 test train train train+ X b + C gY β=     (3.43) 

 

where  l testY : is a (1 x 1) predicted output of the MetaSim 

 β0: is the (1 x 1) intercept of the regression from the training data 

 X: is a (n x d) vector of potential design variables 

b: is a (d x 1) column vector β estimate of unknown parameters called partial 

regression coefficients or weights associated with the design variables 

 C: is a (n x d) vector of potential random controls from the training data 
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g: is a (d x 1) column vector γ estimate of unknown parameters called partial 

regression coefficients associated with the random controls. 

 

Similar to the extension discussed for the regression method in M6, an extended set of 

predictions can be provided to the analyst.  The only difference is on the size of the input 

matrix which now includes the significant controls, i.e., train train ]X = [1  X C# .  For 

situations where we have a new set of design variable(s) and no previous runs are 

available, the question of what to use for the random controls estimate needs to be 

addressed.  We propose using the assumption that each control (with user mean already 

subtracted) is in the form Normal( cμ , cσ ).  For each significant controls identified, we 

use the assumption that cμ  = E ( )a
a cc μ−  and derive the standard deviation from the 

training data (obtained from previous simulation runs) using  

 

1

1  =1,2,...,
n

ai
c

i ai

s a d
n count

σ
=

= ∀∑ .     (3.44) 

 

To illustrate, the form of the input matrix (assuming one new design point), X0, that will 

be used in the regression will be 

 

1 10 1[1    Normal( , ) ... Normal( , )]
d dc c c cX X μ σ μ σ= .    (3.45) 

 

For our predictions we assume a normal distribution and generate the regression 

predictions based on  

 

l l l'
0 0 0( , ( ))Y Normal Y Var Y=     (3.46) 

 

where, l 0Y , the value predicted at X0 by the regression equation given by 
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l
0 0 trainX bY =      (3.47) 

 

btrain is calculated similar to equation (3.21) where Xtrain includes the control variables, 

i.e., train train ]X = [1  X C# . 

Similar to equation (3.24), Var( l 0Y ) is given by 

 

l ( ) 1' ' 2
0 0 train train 0( ) X X X XVar Y σ

−
=    (3.48) 

 

where σ2 in equation (3.48) is typically unknown and is thereby estimated by s2 using 

[Dillon and Goldstein, 1984:226] 

 

( ) ( )'
train train train train train train2 Y X b Y X b

s
n p

− −
=

−
   (3.49) 

 

where  n: total of observation (or replication runs in the simulation) 

p: total number of β parameters that need to be estimated, including the intercept                               

β0.   

 

Note that unlike equation (3.43) where the weights are separated for the design and 

control variables, the β parameters in equations (3.47) and (3.49) also include the weights 

for the random controls. 

3.7 Training and Testing Data Set-up 

In general, we want to be able to test the reliability of our regression and ANN model so 

we need to separate our data between training and testing sets.  We generally build the 

model using the training set and test the generalizability of the network by supplying it 

with another set of data that it has never previously encountered.  The motivation here is 

to validate the model on a dataset that is different from the one employed during 
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parameter estimation.  This is the premise for a whole class of model evaluation 

techniques called cross-validation.  There are different variants of the cross-validation 

that are typical in practice; they are: hold-out method, multifold (or k-fold) cross-

validation, and the leave-one-out method [Haykin, 1999:213-218]. 

 The hold-out method is the simplest and most commonly used cross-validation 

technique.  The data is partitioned into two sets, called the training and the testing sets.  

The Regression and/or ANN fits a function using the training set only, then the network 

is used predict the output values for the unseen data in the testing set.  The errors 

calculated on the testing data are used to evaluate the model.  This method is typically 

preferred over the residual method since the extra effort is not too taxing.  That is, the 

only extra effort required is to partition the data into two sets and perform two sets of 

error predictions.  Unfortunately, the error evaluation could have a large variance and is 

heavily dependent on how the partition is accomplished [Devijver and Kittler, 1982:10]. 

 Multifold (k-fold) cross-validation is one way to improve on the hold-out method.  

The available dataset of n samples (exemplars) is divided into k subsets, k > 1; typically k 

is divisible into n.  The model is trained on k-1 subsets and the validation error is 

measured on the testing subset, which is left out of the training set.  The process is 

repeated k times.  The error performance is evaluated by averaging the error of the left-

out subsets over the k trials.  The variance in this method is less apparent the larger k is; 

however, the training algorithm will need to be run k times, where 1 < k ≤ n, which would 

imply that it takes k times more computation for an evaluation [Haykin, 1999:218]. 

 Leave-one-out cross-validation is the extreme form of the multifold cross-

validation and is computationally very expensive, with k = n.  This technique is typically 

useful when there is a limited number of available data.  For this method, n-1 samples are 

used to train the model and the validation error is measured on the one left out sample.  

The process then proceeds in the same manner as the multifold cross-validation.  

 Once the cross-validation method has been chosen for use in the training and 

testing data set-up for simulation input/output data, the question of how to partition the 

data needs to be considered.  That is, should the data be partitioned between scenarios 

using all replications or between replications across all scenarios?  Based on the results of 
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our experiments, the analyst should partition the data using all the scenarios and partition 

the training/testing data accordingly (e.g., ~80/20 rule) across replications.  The reason 

for this is to ensure that the training model has had sufficient amount of coverage to 

ensure proper training.  The partitioning should be randomized; however, the analyst 

needs to keep track of the proper pairing of the input/output relationship to ensure the 

appropriate data are being compared.  In addition, with randomization, the analyst needs 

to ensure that the results are repeatable.  Thus, setting some set random seed needs to be 

considered.  For ease of demonstration, no randomization is employed in the sample 

described next.   

 Consider three simulation inputs with two settings at high and low using a full-

factorial design (i.e., 23 = 8).  In addition, assume at each setting (scenario) that the 

number of replications (n) is 100, for a total of 800 sample data points (or exemplars).  

Employ the general rule of ~80/20 cross-validation data partitioning for training and 

testing, respectively.  The k-fold, where k = 5, data set-up example is displayed in Table 

14.  This method, as previously mentioned, is similar to the hold-out method repeated k-

times.  Recall that data evaluation for the k-fold will be based on the average output for 

all the folds.   

 

Table 14 - k-Fold (k = 5) Method Cross-Validation Set-up 

Fold  Scenario # Training Data: 
Replication # 

Testing Data: 
Replication # 

1 

1 1-80 81-100 
2 1-80 81-100 
... ... ... 
8 1-80 81-100 

2 

1 1-60, 81-100 61-80 
2 1-60, 81-100 61-80 
... ... ... 
8 1-60, 81-100 61-80 

3 

1 1-40, 61-100 41-60 
2 1-40, 61-100 41-60 
... ... ... 
8 1-40, 61-100 41-60 

4 

1 1-20, 61-100 21-40 
2 1-20, 61-100 21-40 
... ... ... 
8 1-20, 61-100 21-40 

5 1 21-100 1-20 
 2 21-100 1-20 
 ... ... ... 
 8 21-100 1-20 

All Folds Total 3200 exemplars 800 exemplars 
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Now as an example of the hold-out method, use the first 80 replications per scenario from 

the simulation model to train the regression and the ANN as depicted in Table 15.  The 

last 20 replications within a scenario for all scenarios should be used to examine the 

ability of the regression and the ANN to generalize to previously unseen combination 

samples.  Thus, for the lower-level model output, use 640 exemplars to train the 

regression and ANN models and use 160 exemplars for testing.   

 

Table 15 - Hold-out Method Cross-Validation Set-up 

Scenario # Training Data: 
Replication # 

Testing Data: 
Replication # 

1 1-80 81-100 
2 1-80 81-100 
... ... ... 
8 1-80 81-100 

Total 640 exemplars 160 exemplars 

 

A demonstration of the use of each method will be accomplished on the application 

models in Chapters 4 and 5.  That is, for the Flying Training Model in Chapter 4, the 

hold-out method for cross-validation will be used; for the ALS Sortie Generation Model 

in Chapter 5, the k-fold validation will be used. 

3.8 Higher-Level Model Output Comparison 

The model outputs of the alternative techniques are not immediately evaluated (compared 

to the truth model) at the lower level.  Rather, the intent is to determine the effects of the 

metamodeling techniques on the output(s) of the higher-level model.  After running the 

lower-level model(s) and feeding their output, using the DM and the different alternate 

methods, as an input into the higher-level model, we need to determine if any of the 

alternate methods are significantly different from the Direct Method approach.  For this 

comparative analysis we propose utilizing the paired-t confidence interval approach as 

described in Law [2006:558-560] to form the approximate 100(1-α) percent simultaneous 

confidence interval (Bonferroni inequality) where we set the DM approach as the 

standard to compare all other methods to.  The analysis is carried out to examine how the 
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various aggregation techniques at the lower-level can handle reproducing the actual 

simulation model at the higher level and to evaluate the alternative aggregation 

techniques’ ability to perform general prediction of the simulation model.   

Performance Estimation 

In order to determine the accuracy of the metamodeling technique, some form of 

performance estimation has to be established.  The simulation model output will be 

considered truth and the prediction model output will be compared to this.  The 

metamodel, along with the appropriate feature selection/extraction and VRT, with the 

smallest error function mean absolute error (MAE) will be considered “best” for that 

specific application.  MAE will be calculated as:  

 

  
(sim out - pred out)

MAE = 
n

∑                                              (3.50) 

 

where  sim out: simulation output (truth) 

 pred out: aggregated model predicted output 

 n: number of simulation replications. 

 

In addition to the MAE, the mean absolute percent deviation (MAPD) [Alam et 

al., 2004], defined as 

 

(sim out - pred out) / sim out
MAPD = 

n
∑                                        (3.51) 

 

will also be used to compare the relative performance of the different aggregation 

techniques.  Measuring the percent deviation in addition to the actual deviation enables us 

to scale the results and provides a common measure of performance. 

When comparing MAE between the DM and the different aggregation 

methodologies (Method 1 (M1) to Method 8 (M8)), we need to know if the difference 
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from the standard is statistically significant.  For this analysis we will use the method 

described in Sections 10.2-10.3 in Law [2006:552-561] to determine if the alternative 

methods are significantly different from the Direct Method approach.  The alternate 

method that is not statistically different from the DM approach and has the smallest error 

function MAE from DM will be considered “best” alternative for that specific simulation 

application in terms of means comparison.  Next, we describe how to apply the method of 

paired-t confidence interval comparison described in Law [2006:552-561]. 

If the number of models (DM vs. M1-M8) being compared is represented by m, 

then q = 1, 2,…, m (in this example, m = 9).  Let the number of samples be denoted by n 

where n is the number of simulation replications.  This allows the confidence interval to 

be tested with a paired-t test if the number of samples is greater than 30 and it is assumed 

that each of the samples is independent and identically distributed (IID).  For m models, 

let Mq1, Mq2, …, Mqn be a sample of n IID samples from q models and define Zqi = M2i-

M1i, M3i-M1i,…, Mmi-M1i, for i = 1, 2,…, n.  Thus,   

 

( ) 1

n

qi
i

q

Z
Z n

n
==
∑

                                     (3.52) 

and  

n ( )
( )

( )

2

1

1

n

qi q
i

q

Z Z n
VAR Z n

n n
=

⎡ ⎤−⎣ ⎦
⎡ ⎤ =⎣ ⎦ −

∑
                    (3.53) 

and form the paired-t confidence interval 

 

( ) n ( )1,1 /q n c qZ n t VAR Z nα− − ⎡ ⎤± ⎣ ⎦                    (3.54) 

 

where the lower bound is represented by subtracting (-) the paired-t and the upper bound 

by adding (+), here c = m – 1 is the number of model intervals to be compared and the α 

in the paired-t is typically chosen to be equal to 0.05 or 0.10.  If the calculated differences 
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are normally distributed, the confidence interval is exact; otherwise, the central limit 

theorem will guarantee that the coverage will be near 1-α for large n.  

 In addition to determining if the difference in the means between the Direct 

Method and the other methods are significantly different, additional comparisons can be 

performed to assess the differences/similarities in the simulation outputs.  The methods 

discussed next are typical simulation input assessments discussed in Law [2006:330-359] 

for determining how representative the input fitted distributions are.  In our application, 

we will use these techniques in assessing the similarities/difference in the outputs of the 

Direct Method as compared to the different aggregation methods.  Graphical 

comparisons, such as the probability density function (pdf) and/or cumulative distribution 

function (cdf) comparisons, could prove beneficial in evaluating the different simulation 

outputs (see Law [2006:331-333] on how to build a pdf and a cdf).  The pdf, typically 

designated as f(.), plot presents how much of the distribution of a random variable is 

found in a given area.  On the other hand, the cdf, denoted by F(.), gives us the area under 

the pdf, up to a certain value.  The pdf and the cdf provide a complete description of the 

probability distribution of some random variable and contain the same information 

[Casella and Berger, 2002:36].  Mathematically, the cdf of a continuous random variable 

X is given by [Casella and Berger, 2002:29] 

 

0
( ) ( ) ( ) ,  

x
F x P X x f t dt x= ≤ = ∀∫                   (3.55) 

 

and the pdf is a function that satisfies [Casella and Berger, 2002:35] 

 

( ) ( ) ,  
x

F x f t dt x
−∞

= ∀∫ .                  (3.56) 

 

Thus, if the random variable X has a density function f(x) such that for a ≤ b, the 

probability that X falls in [a, b] is [Wackerly et al., 1996:143] given by 
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( ) ( )
b

a
P a X b f x dx≤ ≤ = ∫ .                  (3.57) 

 

In addition, a further relationship between the cdf and the pdf is defined below [Casella 

and Berger, 2002:35] 

 

( ) ( )d F x f x
dx

= .                     (3.58) 

 

 

Graphically, the pdf and the cdf are represented in Figure 28. 

 

 
f(x)

F(x)

1

0

a

a

F(a)=P(X≤a)

P(X≤a)

 
Figure 28 - Graphs of the pdf and cdf 

 

Overlaying the different pdf and/or cdf of the different outputs on the same graph 

provide the analyst a direct visual comparison of the data.  Sometimes the difference may 

not be directly apparent on the direct graphical comparison, thus graphing the differences 

between the different functions might be more helpful.  For the cdf comparisons, the 

analyst could build the distribution-function-differences plot [Law, 2006:333-334] in 

order to visualize the difference between the different cumulative distribution functions.  
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If the two distribution functions that are being compared are a perfect fit then the plot will 

be a horizontal line.  This comparison can be done using the ExpertFit® software using 

the advance mode and performing the Homogeneity-Tests on the different distribution 

functions.  In addition to the distribution function comparison, the histograms (pdf 

representation) can also be compared graphically and their corresponding frequency-

comparison errors plotted.  Determining the number of intervals is an art rather than a 

science, thus this portion of the histogram comparison needs to be played with. 

To mathematically assess the pdf and the cdf, the analyst could calculate the 

cross-entropy between the density functions and/or perform the Kolmogorov-Smirnov (K-

S) test between the distribution functions.  Cross-entropy is calculated as follows [Duda 

et al., 2001:318] 

 

=1

sim outCE = sim out ln
pred out

n
i

i
i i

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                              (3.59) 

 

where  sim out: simulation output (truth) 

 pred out: aggregated model predicted output 

 n: number of simulation replications. 

 

The cross-entropy value will be close to zero when the density functions are similar and 

equal to zero when the density functions are identical.  To assess the cdf, the empirical 

distribution functions can be compared using the two-sample K-S test.  For a full 

discussion on the K-S test, see Law [2006:346-351].  For our comparison purpose, we 

utilize the K-S test for two samples that tests the hypothesis H0: ℘sim =℘pred that the DM 

simulation (sim) output and the alternate aggregation method simulation output (pred) 

come from the same distribution using the Matlab function kstest2.  Suppose that the DM 

method output Y1,…,Yn has a distribution with cdf Fsim(y) and the alternate method 

simulation output Y’1,…Y’n has a distribution with cdf Gpred(y’), we need to test H0: Fsim = 

Gpred versus Ha: Fsim ≠ Gpred, where the alternative hypothesis is when the simulation 

outputs from the DM and the alternate method come from different continuous 
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distributions.  The K-S statistic Dn is measure of the closeness (largest vertical distance) 

between the two distribution functions and is formally defined as [Law, 2006:347] 

 

{ }sim pred = sup ( ) ( ')n
x

D F y G y− .                                             (3.60) 

 

If Fsim(y) and Gpred(y’) are similar, then the K-S statistic will be close to zero and if 

identical, the K-S statistic will be equal to zero .  The kstest2 function in Matlab [Matlab, 

2007] is as follows 

 

[ , , ] = kstest2(sim output,pred output)H p ksstat                               (3.61) 

 

where  H = 1 or 0, reject H0 or fail to reject H0, respectively 

 p: asymptotic p-value  

 ksstat: K-S statistics Dn. 

3.9 Chapter Summary 

This chapter provides the description for the different aggregation methodologies 

implemented in this research.  Section 3.2 describes the ANN feasibility study on the 

Law and Kelton [1991] inventory problem.  In Section 3.3 the proposed overall 

aggregation process is outlined.  In Section 3.4 the methodology to mathematically 

represent and decompose a discrete event simulation model for aggregation is described 

along with a sample problem.  Next, the method for determining the number of 

replications in a simulation model to obtain a desired precision accuracy for output(s) of 

interest is described in Section 3.5.  The different aggregation methodologies 

implemented in this research are detailed in Section 3.6 and a brief summary of these 

techniques are provided in Table 16 where new or expansion to existing methods are 

indicated with an asterisk.  Section 3.7 explains the set-up for the training and testing data 

for use in the regression and ANN methods.  Finally, Section 3.8 provides a description 

of how the lower-level and higher-level model outputs are compared for evaluation and 
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specifies the performance estimation techniques that will be employed to determine the 

appropriateness and accuracy of the metamodeling techniques used.     

Table 16 - Aggregation Methodology Summary 
Method Short Name Brief Description Comments 

Mean ( ilY ) 
Method 1  

(M1) 
- simplest method 
- average across all observations 
and replications; grand mean 

- use all available data for 
prediction 
-prediction based on per 
scenario 

Normal , sY il
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Method 2  
(M2) 

- given sample size is large, J ≥ 
30, assumes data are normally 
distributed with mean parameter 
derived from M1 and standard 
error (se) of the mean 

- use all available data for 
prediction 
-prediction based on per 
scenario 

MeanCV � �( )( )iYμ β  Method 3  
(M3) 

- uses mean derived from the 
control variate (CV) technique 
- uses the Bauer and Wilson 
[1993] standardized controls 

- use all available data for 
prediction  
-prediction based on per 
scenario 

l l( ) CV 11 Normal  ( , )
i iY Y sεμ β μ σ∼  Method 4  

(M4) 

- given sample size is large, J ≥ 
30, assumes data are normally 
distributed with mean parameter 
derived from M3 and se 

- use all available data for 
prediction  
-prediction based on per 
scenario 
- goal is for se to be smaller 
than se from M2 

Distribution Fitting Method 5  
(M5) 

- uses all the data (down to the 
observation level) of each lower-
level output and fits a distribution 
using Arena®’s Input Analyzer  

- use all available data for 
prediction 
-prediction based on per 
scenario 

Regression Method 6  
(M6) 

- uses the ordinary least squares 
approach 
- uses one regression equation 
per simulation output 
- uses step-wise regression for 
design variable (inputs) selection 

- partition data into training 
and test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, 
esp. useful when new sim 
runs do not exist 

Regression with Controls* Method 6.1  
(M6.1) 

- a novel expansion of M6 where 
the random controls are included 
as predictors  

- partition data into training 
and test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, 
esp. useful when new sim 
runs do not exist 

Artificial Neural Network 
(ANN) 

Method 7  
(M7) 

- uses FANN, RBF, and GRNN 
- uses one ANN model for all 
simulation outputs 

- partition data into training 
and test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, 
esp. useful when new sim 
runs do not exist 

ANN with Controls* Method 7.1 
(M7.1) 

- a novel expansion of M7 where 
the random controls are included 
as features  

- partition data into training 
and test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, 
esp. useful when new sim 
runs do not exist 

MetaSim* Method 8  
(M8) 

- a novel technique where the 
random variates in the control 
variate (CV) technique (used in 
M3 and M4) are replaced with an 
estimate using the Normal 
distribution 
 

- if prediction is based on 
each lower-level scenario, 
input matrix only contains the 
control vars 
- if prediction is based on all 
the scenarios, include the 
design vars with the control 
vars in the input matrix 
- works with new design vars, 
esp. useful when new sim 
runs do not exist 

*New or expansion to an existing methodology 
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IV. Application I: Flying Training Model (FTM), Results and Analysis 

4.1 Overview 

This chapter details how the proposed aggregation process discussed in Chapter 3 could 

be applied to one of our application models, the Flying Training Model.  The initial 

approach used in this research was to use a simulation model of a fairly complex flying 

training model.  For our first case study, we apply our framework on a modified flying 

training simulation model from a previous study.  The construction or acquisition of 

hierarchical models is a significant step since this will enable the application and testing 

of the various aggregation techniques proposed.  Several assumptions were required in 

order to simplify and adjust the original flying training model for the purpose of analysis.  

So, while the data and the modeled process are “real,” the outcome of the model are not 

intended to have any real substantive value but merely to illustrate the methods, and 

perhaps provide a guideline on how to implement the different proposed aggregation 

techniques.   

4.2 Flying Training Model 

4.2.1 Model Assumptions  

Several assumptions were required in order to simplify the original flying training model 

and for the purpose of initial analysis used in this research.  In order to proceed with the 

experiment, the first assumption is that the experimental model is valid as simulated and 

represents truth.  Although the original model simulates the three-way interaction  of 

three aircraft platforms, the modified version now consist of only two aircraft platforms 

interacting at separate bases at the lower-level models.  Another assumption is that the 

hierarchical flying training model built will be closely representative of what combat 

modeling hierarchical model exists in the field.  Typically, the analyst will not have the 

luxury of building the models at the two different hierarchical levels.  The analyst usually 

enters the phase where the models have already been built and the task at hand is the 
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aggregation of the models between the two levels.  Thus, the aggregation is not in the 

actual manipulation of the aggregation of the simulation model entities/processes, rather 

the aggregation of the simulation output (in the lower-level models) and the simulation 

input (into the higher-level model). 

4.2.2 Model Description  

The flying training model was built using Rockwell Software’s ARENA™ Version 10.0 

entity-based simulation software.  The simulation represented the flying portion of C-17, 

C-5 and KC-135 pilot training, which is illustrated in Figure 29.  This model simulated 

aircraft scheduling for one year of various combinations of C-5s, KC-135s and C-17s.  

The full model is comprised of two models at the lower level and one at the next higher 

level, as depicted in Figure 30.  The original flying training model came with a user 

provided syllabi for all three platforms, with consideration to future training starting in 

FY07 which were used to model sortie profiles.  Base A Model and Base B Model were 

comprised of C-5/KC-135 and C-17/KC-135 interactions, respectively.  On the other 

hand, Base C Model simulated a three-way aircraft interaction for a non-specific pilot 

type (generic).  Table 17 depicts the different types and number of pilots simulated in the 

three models.  
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Figure 29 - Flying Training Process 
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Each of the pilot types were modeled with their respective courses (e.g., Aircraft 

Commander Air Drop, Aircraft Commander Aerial Refueling, etc.).  The model included: 

crew rest, weather, sunrise/sunset, unscheduled maintenance, Bird Aircraft Strike Hazard 

(BASH), and proficiency reflies.  The model expended resources such as aircraft, Visual 

Flight Rules (VFR) airway, Instrument Flight Rules (IFR) airway, Aerial Refueling (AR) 

and Low-level (LL) airways as each pilot flowed through every sortie in the training 

schedule.  Sorties contained multiple training requirements for different types of pattern 

work, i.e., VFR, IFR, AR, and LL.  A visual representation in Arena layout of sortie flow 

for one of the pilot types for Base A Model is presented later in Figure 31.  The pattern 

times for each sortie, which were typically normally distributed, were assigned per 

subject matter experts (SMEs) recommendation. 
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3 TiSA

 
Figure 30 - FTM Full Model  

Table 17 - FTM Pilot Types 
Level Model Pilot Types 
Higher Base C 1 generic 
Lower Base A 6 C-5 and 7 KC-135 
Lower Base B 11 C-17 and 6 KC-135 

4.2.3 Simulation Input and Output Parameters 

There are several input parameters associated with this system as depicted in Table 18, 

but in able to make the initial analysis manageable, only a few of the input parameters 

were selected to vary as depicted in Table 19.  Let all the key input factors from both 

lower-level (LL) bases A and B be denoted by XA1, XA2, XA3, XA4, XA5, XB1, XB2, XB3, XB4 

and XB5, respectively.  The main rationale in choosing the specific Pilot Type parameters 

is due to its size (number of entries) as compared to the other parameters (e.g., KC-135 
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SOC had total programmed annual entry of 30, while KC-135 PIQ had 206) and to get a 

larger range for inputs.  The outputs of interest at the lower level were the time in system 

(TiS) for three different pilot types for Models A and B corresponding to the pilot type 

entries chosen as the inputs (i.e., C-5 ACAR TiS, KC-135 PIQ TiS, and KC-135 IAC 

TiS, C-17 IAC TiS, C-17 PIQ TiS, and KC-135 AC TiS) and denoted by YA1, YA2, YA3, 

YB1, YB2, and YB3, respectively.  Table 20 depicts the chosen output measures of 

performance for the FTM at the lower-level. 
Table 18 - FTM LL Input Features/Variables 

Feature/Variable Description Base Initial Value Units 
C_5 ACAR Pilot Total Total annual entry for the C-5 ACAR pilots  A 12 pilots 
C_5 SOC Pilot Total Total annual entry for the C-5 SOC pilots A 0 pilots 
C_5 IP Pilot Total Total annual entry for the C-5 IP pilots A 72 pilots 
C_5 IAC Pilot Total Total annual entry for the C-5 IAC pilots A 12 pilots 
C_5 AC Pilot Total Total annual entry for the C-5 AC pilots A 8 pilots 
C_5 ACIQ Pilot Total Total annual entry for the C-5 ACIQ pilots A 10 pilots 
KC_135 AC Pilot Total Total annual entry for the KC-135 AC pilots A 150 pilots 
KC_135 SOC Pilot Total Total annual entry for the KC-135 SOC pilots A 30 pilots 
KC_135 ACIQ Pilot Total Total annual entry for the KC-135 ACIQ pilots A 68 pilots 
KC_135 IP Pilot Total Total annual entry for the KC-135 IP pilots A 245 pilots 
KC_135 ACRQ Pilot Total Total annual entry for the KC-135 ACRQ pilots A 34 pilots 
KC_135 PIQ Pilot Total Total annual entry for the KC-135 PIQ pilots A 206 pilots 
KC_135 IAC Pilot Total Total annual entry for the KC-135 IAC pilots A 92 pilots 
C_5 Fleet Resource Number of available C-5 aircraft (A/C) A 2 A/C 
KC_135 Fleet Resource No. of available KC-135 aircraft  A/B 10 A/C 
C_17 Fleet Resource No. of available C-17 aircraft  B 8 A/C 
C_17 IAC Pilot Total Total annual entry for the C-17 IAC pilots B 114 pilots 
C_17 PIQ Pilot Total Total annual entry for the C-17 PIQ pilots B 392 pilots 
C_17 SOC Pilot Total Total annual entry for the C-17 SOC pilots B 20 pilots 
C_17 ACAD Pilot Total Total annual entry for the C-17 ACAD pilots B 40 pilots 
C_17 AC Pilot Total Total annual entry for the C-17 AC pilots B 154 pilots 
C_17 IP TPS Pilot Total Total annual entry for the C-17 IP TPS pilots B 109 pilots 
C_17 ACRQ Pilot Total Total annual entry for the C-17 ACRQ pilots B 18 pilots 
C_17 IP DDS Pilot Total Total annual entry for the C-17 IP DDS pilots B 85 pilots 
C_17 CAD Pilot Total Total annual entry for the C-17 CAD pilots B 80 pilots 
C_17 ACIQ Pilot Total Total annual entry for the C-17 ACIQ pilots B 94 pilots 
C_17 IP AD Pilot Total Total annual entry for the C-17 IP AD pilots B 31 pilots 
AR Pattern Tanker Set No. of available local air refueling pattern for the tankers 

(KC-135s) 
A/B 400 airway 

AR Pattern Rcvr Set No. of available air refueling pattern for the receivers (C-
5s and C-17s) 

A/B 4 airway 

CS VFR Pattern No. of available visual flight rule air pattern for local A/C 
at CS location 

A/B 3 airway 

IFR Pattern No. of available instrument flight rule air pattern for local 
A/C  

A/B 8 airway 

KC_135 IFR Fly_away 
Resource 

No. of available instrument flight rule air pattern for non-
local A/C 

A/B 99 airway 

KC_135 LL  Fly_away 
Resource 

No. of available low-level air pattern for non-local A/C A/B 99 airway 

KC_135 VFR Fly_away 
Resource 

No. of available visual flight rule air pattern for non-local 
A/C 

A/B 99 airway 

LL Pattern No. of available low-level air pattern for local A/C A/B 20 airway 
Sooner ALZ No. of “extra” assault landing zone A/B 3 airway 
Tactical Pattern No. of airway for tactical pattern maneuvers A/B 4 airway 
Tanker Track Not in Altus No. of available non-local air refueling pattern for the 

tankers (KC-135s)  
A/B 396 airway 

VFR Pattern No. of available visual flight rule air pattern for local A/C A/B 4 airway 
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Since the only sets of original inputs were at one level, an experimental design 

was set up for each base for the five different sets of input for use in the simulation and 

metamodeling.  Once again, to keep the data more manageable at this time, only two 

levels were considered for each input parameter.  For the pilot type entries, the original 

given entries and either the +5% or -5% from the original were considered.  In addition, 

since the number of available aircraft is very limited, as an additional level, an increase of 

one aircraft was its form of variation.  Thus, we consider a two-level full-factorial design 

of five factors that result in 25 = 32 different scenarios for each base at the lower level of 

the hierarchical simulation.  Tables 21 and 22 depict the different combinations of the 

varying input parameters for Bases A and B, respectively.   

 

Table 19 - FTM LL Key Input Factors Design of Experiment 

Feature/Variable Base Original 
Value - 5% + 5% Feature 

Designator 
C-5 ACAR Pilot Total 

A 

12 11 --- XA1 
KC-135 PIQ Pilot Total 206 --- 217 XA2 
KC-135 IAC Pilot Total 92 87 --- XA3 
C-5 Fleet Resource 2 --- +1 XA4 
KC-135 Fleet Resource 10 --- +1 XA5 
C-17 IAC Pilot Total 

B 

114 --- 120 XB1 
C-17 PIQ Pilot Total 392 372 --- XB2 
KC-135 AC Pilot Total 150 --- 158 XB3 
C-17 Fleet Resource 8 --- +1 XB4 
KC-135 Fleet Resource 10 --- +1 XB5 
 

 

Table 20 - FTM LL Key Output Performance Measures 

LL Output Base Output 
Designator

C-5 ACAR TiS 
A 

YA1 
KC-135 PIQ TiS YA2 
KC-135 IAC TiS YA3 
C-17 IAC TiS 

B 
YB1 

C-17 PIQ TiS YB2 
KC-135 AC TiS YB3 
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Table 21 - FTM Base A Input Parameters 
Scenario 

Run # 
C-5 ACAR 
Pilot Total 

KC-135 PIQ 
Pilot Total 

KC-135 IAC 
Pilot Total 

C-5 Fleet 
Resource 

KC-135 Fleet 
Resource 

1 11 206 87 2 11 
2 11 206 92 2 10 
3 12 217 92 3 11 
4 11 217 92 3 11 
5 12 217 87 2 10 
6 12 206 92 2 11 
7 12 206 92 2 10 
8 11 206 87 2 10 
9 12 206 92 3 11 

10 12 206 87 2 10 
11 12 217 92 2 11 
12 12 217 87 3 11 
13 12 217 92 3 10 
14 12 206 87 3 11 
15 11 217 87 2 11 
16 11 206 92 2 11 
17 12 217 92 2 10 
18 11 206 87 3 10 
19 12 206 87 2 11 
20 12 217 87 3 10 
21 12 206 87 3 10 
22 12 217 87 2 11 
23 11 217 87 3 10 
24 11 206 87 3 11 
25 11 206 92 3 11 
26 11 217 87 3 11 
27 11 206 92 3 10 
28 11 217 92 3 10 
29 11 217 87 2 10 
30 11 217 92 2 11 
31 12 206 92 3 10 
32 11 217 92 3 10 
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Table 22 - FTM Base B Input Parameters 
Scenario 

Run # 
C-17 IAC 
Pilot Total 

C-17 PIQ 
Pilot Total 

KC-135 AC 
Pilot Total 

C-17 Fleet 
Resource 

KC-135 Fleet 
Resource 

1 114 392 150 9 11 
2 114 372 158 9 11 
3 114 372 150 9 11 
4 120 392 150 8 11 
5 120 372 150 9 11 
6 120 392 158 8 11 
7 120 372 158 8 10 
8 120 392 150 8 10 
9 120 392 150 9 10 

10 120 372 150 9 10 
11 114 392 150 8 10 
12 120 392 150 9 11 
13 120 372 158 9 10 
14 120 392 158 9 11 
15 120 372 158 9 11 
16 114 392 158 9 10 
17 114 392 158 8 11 
18 114 372 158 8 11 
19 114 372 158 9 10 
20 114 392 150 8 11 
21 114 372 150 8 11 
22 114 372 158 8 10 
23 120 392 158 9 10 
24 120 372 158 8 11 
25 114 392 150 9 10 
26 120 372 150 8 10 
27 120 392 158 8 10 
28 114 372 150 9 10 
29 114 392 158 8 10 
30 120 372 150 8 11 
31 114 392 158 9 11 
32 114 372 150 8 10 

 
 

Since the aggregation for this model is to within-a-level (logical decomposition), 

it is easy to identify the intermediate lower-level model output data for use as input into 

the higher level (HL) model.  However, this is not always the case when the aggregation 

is to within-a-model (structural decomposition), as is the case for the next application 

model in Chapter 5.  Depending on which portion of the model can be decomposed and 

therefore aggregated as a unit, will dictate the intermediate output/input that needs to be 
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evaluated.  Table 23 depicts the higher level model outputs of interest which are: total 

pilot grads (TPG), TiS, and mission capability rate (MCR) designated as Z1, Z2, and Z3, 

respectively.  The entire input/output process at the two levels is best depicted in Figure 

30.  Appendix B covers more details on the FTM that are not included in this chapter.   

 

Table 23 - FTM HL Key Output Performance Measures 

HL Output Short 
Name Base Output 

Designator
Total Pilot Grads TPG 

C 
Z1 

Time in System TiS Z2 
Mission Capability Rate MCR Z3 

 

4.3 Results and Analysis 

4.3.1 Mathematical Representation of the Flying Training Model  

The decomposition examined for the flying training model is that of the logical 

decomposition where the aggregation accomplished is within-a-level (i.e., the entire Base 

A Model in the lower-level model in Figure 30 is aggregated as a whole).  For this within-

a-level aggregation example we take the entire significant input/output of Base A Model 

and aggregate them as a whole.   

On the other hand, in order to perform aggregation within-a-model (i.e., structural 

decomposition), Base A Model can be further examined and perform the decomposition 

within this model to determine what portion of this specific model can be aggregated.  In 

Figure 31, one of the C-5 ACAR sorties within Base A Model is depicted.  The 

decomposition can also be performed at this point for a more detailed look at the model.  

For this within-a-model look, the input/output within this specific sortie is aggregated.  

However, we will focus our attention at this time on the within-a-level model 

aggregation, i.e., aggregation of Base A Model.  The structural decomposition will be 

demonstrated for the sortie generation model in the next application model of the next 

chapter. 
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Figure 31 - FTM Base A Model (C-5 ACAR Sortie 1) 

 

To illustrate the mathematical framework idea, we will demonstrate and define 

the network structure of Figure 30.  Consider in Figure 32 the directed network graph of 

the Full Model (FT Model) from Figure 30.   
 

N6

N3N1

N2 N4

N5

e1 = 5 e3 = 5

e2 = 3 e4 = 3

e5 = 3

 
Figure 32 - FT Model Network Graph 

 

In the graph, as depicted in Figure 32, its specific graph representation is as follows 

 
G = {V(G), E(G), R(G)}    (4.1) 

 where: 
  V(G) = {N1, N2, N3, N4, N5, N6}, is the vertex set, 
  E(G) = {e1, e2, e3, e4, e5}, is the edge set, 
  R(G) = {eN1→N2, eN3→N4, eN2→N5, eN4→N5, eN5→N6}, is the set of relations. 
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Thus, for the graph in Figure 32, its specific adjacency and incidence matrices are 

depicted in Figure 33 as follows, respectively 
 

FTM

                         N1   N2   N3  N4 N5 N6                               e1 e2 e3 e4  e5

N1 0 1   0   0   0   0
N2 0 0   0   0   1    0
N3 0 0   0   1   0   0

( )  
N4 0 0   0   0   1   0
N5 0 0   0   0   0   1
N6 0 0   0   0   0   0
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Figure 33 - a) Adjacency and b) Incidence Matrix of the FT Model 
 

Now that the full model structure has been visually, by means of a network graph, and 

mathematically, by defining the elements of the network graph, represented we now 

proceed with the model decomposition procedure for the FT Model where we consider its 

network graph in Figure 32.  Before proceeding with the decomposition procedure, we 

can visually assess that there are three subnetworks for the FT Model network graph in 

Figure 32 (i.e., one of the subnetwork contains nodes 1 and 2; another contains nodes 3 

and 4 and; the last subnetwork contains nodes 5 and 6).  We will now verify this visual 

assessment with the decomposition method.  First we recall the edge incidence matrix 

M(GFTM) for the FT Model network graph as previously derived and is shown in Figure 

33b.  The weight matrix W and the pseudo-covariance matrix C are shown in Figure 34 

and Figure 35, respectively.  The value of the edges in the weight matrix corresponds to 

the number of input data to each node (e.g., e2 = 3 is the number of output data from N2 

which in turn is fed into N5). 
 

FTM

                             e1 e2 e3 e4 e5

e1 5  0  0   0  0
e2 0  3  0   0  0

 ( ) = e3 0  0  5   0  0
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Figure 34 - FT Model Network Graph Edge Weighting Matrix 
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Figure 35 - FT Model Network Graph Pseudo-Covariance (C) Matrix 

 
The corresponding D matrix and the calculated R matrix from the pseudo-covariance 

matrix C is displayed next in Figures 36 and 37, respectively. 
 

FTM

1 0 0 0 0 0
5

10 0 0 0 0
8

10 0 0 0 0
5 ( ) = 

10 0 0 0 0
8

10 0 0 0 0
9

10 0 0 0 0
3

D G

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Figure 36 - FT Model Network Graph D Matrix 
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Figure 37 - FT Model Network Graph Pseudo-Correlation (R) Matrix 

 
We now need to assess how many subnetworks are present in the larger FTM 

network.  Table 24 depicts the results of performing the principal component analysis on 

the pseudo-correlation matrix R. 
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Table 24 - FT Model Network Graph Extracted Factors 

Factor Eigenvalue Percent of 
Variation 

Cumulative Percent 
of Variation 

1 2.00 33.33 33.33 
2 1.79 20.37 63.18 
3 1.46 24.27 87.45 
4 0.54 9.06 96.51 
5 0.21 3.49 100.00 
6 0.00 0 100.00 

 
 

Based on the result of the principal component analysis on the R matrix and using 

Kaiser’s criterion, we retain three factors.  Next we need to find which nodes belong to 

what subnetworks.  After performing a principal component analysis on the C matrix, we 

obtain its initial factor loading in Table 25, followed by its corresponding quartimax-, 

varimax-, and equamax-rotated factor matrices in Tables 26, 27, and 28, respectively.   

 
Table 25 - FT Model Network Graph Initial Factor Loadings - C 

Node Factor 1 Factor 2 Factor 3 
1 -0.433 0.646 -0.513 
2 -0.648 0.687 -0.265 
3 -0.433 -0.646 -0.513 
4 -0.648 -0.687 -0.265 
5 -0.782 0.000 0.615 
6 -0.354 0.0000 0.607 

 
 

Table 26 - FT Model Network Graph Quartimax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.661 0.646 -0.119 
2 -0.668 0.687 0.210 
3 -0.661 -0.646 -0.119 
4 -0.668 -0.687 0.210 
5 -0.209 0.000 0.973 
6 0.115 0.000 0.693 

 
 

Table 27 - FT Model Network Graph Varimax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.661 0.646 -0.119 
2 -0.669 0.687 0.210 
3 -0.661 -0.646 -0.119 
4 -0.668 -0.687 0.210 
5 -0.209 -0.000 0.973 
6 0.115 0.000 0.693 
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Table 28 - FT Model Network Graph Equamax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 

1 -0.922 -0.009 -0.132 
2 -0.961 0.010 0.196 
3 -0.009 -0.922 -0.132 
4 0.010 -0.961 0.196 
5 -0.162 -0.162 0.968 
6 0.071 0.071 0.695 

 

After examining Tables 26 and 27, we see that the structure of the quartimax- and 

varimax-rotated loadings are still not “simple” enough for a meaningful interpretation, 

e.g., nodes 1 to 4 are too close to call on which factor they cluster on.  We then perform a 

different orthogonal rotation on the C matrix using the equamax method.  This new 

rotation is depicted in Table 28 and we can see that the equamax rotation produced a 

much more interpretable result.  Based on this table, we see: nodes 1 and 2 load on Factor 

1, nodes 3 and 4 load on Factor 2, and that nodes 5 and 6 load on Factor 3.  This confirms 

the initial visual assessment from earlier on which nodes should cluster together.  We 

have just demonstrated the reason for trying different rotation methods in order to assess 

the best grouping of the nodes. 

In addition, if we perform the PCA on the R matrix, we get the initial factor 

loading and its corresponding varimax rotated factor matrix in Tables 29 and 30, 

respectively. 

Table 29 - FT Model Network Graph Initial Factor Loadings - R 
Node Factor 1 Factor 2 Factor 3 

1 -0.513 0.669 -0.415 
2 -0.649 0.669 -0.240 
3 -0.513 -0.669 -0.415 
4 -0.649 -0.669 -0.240 
5 -0.688 0.000 0.619 
6 -0.397 0.000 0.783 

 
 

Table 30 - FT Model Network Graph Varimax Rotated Factor Matrix - R 
Node Factor 1 Factor 2 Factor 3 

1 -0.938 0.009 -0.066 
2 -0.950 -0.004 0.155 
3 0.009 -0.938 -0.066 
4 -0.004 -0.950 0.155 
5 -0.167 -0.167 0.895 
6 0.069 0.069 0.873 
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The nodes in Table 30 load according to our initial visual assessment, similar to 

the equamax rotated C matrix, of nodes 1 and 2 loading on Factor 1, nodes 3 and 4 

loading on Factor 2, and nodes 5 and 6 loading on Factor 3.   

4.3.2 Determining the Number of Replications Based on β 

In order to obtain an approximate number of replications based on a specified precision 

β, we employed the technique used in Law [2006: 500-501].  This technique enables the 

analyst to have control over the confidence-interval half-length (or the precision of the 

average output Y ).  If the output estimate Y  is such that Y μ β− = , then Y  has an 

absolute error of β with a probability of approximately 1-α [Law, 2006:500].  The 

Matlab code implemented for Base A, Rep_determination_by_precision_BaseA.m, to 

generate the results are provided in Appendix C.  The code for Base B is identical except 

for the source data change. 

The initial conditions for both Models A and B are as follows 

i = 30: initial number of replications 
k = 3: number of measures of performance per lower-level model 
α = .10 
αBonferroni =α/2k  
 
Three different βs were examined and the resulting number of replications is 

depicted below. 

For βA1 = βA2 = βA3 = βB1 = βB2 = βB3 = 0.1 days  

βA1: Base A C-5 ACAR TiS = 173 replications 
βA2: Base A KC-135 PIQ TiS = 41 replications 
βA3: Base A KC-135 IAC TiS = 30 replications 
βB1: Base B C-17 IAC TiS = >1000 replications 
βB2: Base B C-17 PIQ TiS = >1000 replications 
βB3: Base B KC-135 AC TiS = 105 replications 

 
For β1A = β2A = β3A = β1B = β2B = β3B = 0.25 days  
 
βA1: Base A C-5 ACAR TiS = 30 replications 
βA2: Base A KC-135 PIQ TiS = 30 replications 
βA3: Base A KC-135 IAC TiS = 30 replications 
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βB2: Base B C-17 IAC TiS = 454 replications 
βB2: Base B C-17 PIQ TiS = 459 replications 
βB3: Base B KC-135 AC TiS = 30 replications 

 
For βA1 = βA2 = βA3 = βB1 = βB2 = βB3 = 0.5 days  
 
βA1: Base A C-5 ACAR TiS = 30 replications 
βA2: Base A KC-135 PIQ TiS = 30 replications 
βA3: Base A KC-135 IAC TiS = 30 replications 
βB1: Base B C-17 IAC TiS = 116 replications 
βB2: Base B C-17 PIQ TiS = 117 replications 
βB3: Base B KC-135 AC TiS = 30 replications 

 
A reasonable practical bound would be to choose the days to be no more than 0.5.  

With 0.5 as the bound the number of replication runs for both models A and B will be 

117 replications, since this is the minimum requirement for Base B KC-135 PIQ TiS in 

order to bound the variance of the TiS to be at or below 0.5 days.  Choosing 117 

replications will meet the entire requirement of 0.5 days precision for all six pilot time in 

system for both models.  Thus, the average TiS for both models has an absolute error of 

at most 0.5 days with a probability of approximately 90%, which means that 90 times out 

of 100, the TiS for either model will be at most 0.5 days.  Since we had three 

simultaneous intervals to construct per model, each interval is at level 96.67% to yield an 

overall confidence level of 90%. 

4.3.3 Training/Testing Data set-up 

The hold-out method for cross-validation was used [Devijver and Kittler, 1982:10] in the 

evaluation of the FTM for the regression and the ANN techniques.  This method 

partitions the data into two groups and is used to train the predictor and the other 

remaining set is used to test the predictor.  It should be noted that according to Devijver 

and Kittler [1982:10], this partitioning method gives a pessimistically biased error 

estimate.  We employed the general rule of ~70/30 data partitioning for training and 

testing data, i.e., the input parameter settings used from the computer simulation to train 

the ANN are the first 80 replications per scenario and are depicted in Table 31.  The last 

37 replications within a scenario were used to examine the ability of the ANN to 
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generalize to previously unseen combination samples.  All the 32 different scenarios were 

replicated 117 times, for a total of 3,744 sample data points (or exemplars).  Thus, for 

each lower-level model output, 2,560 data points were used to train the neural network 

and 1,184 data points were used for testing.  The test prediction outputs are used to feed 

the higher-level model (Model C) and its output is compared to the output when the 

Direct Method is employed.  It is assumed that the outputs from the simulation for the 

Direct Method are the right answers (truth), which is what the ANN outputs are 

compared against for accuracy determination. 

Table 31 - FTM Hold-out Training/Testing Data Set-up 

Scenario # Training Data: 
Replication # 

Testing Data: 
Replication # 

1 1-80 81-117 
2 1-80 81-117 
... ... ... 
32 1-80 81-117 

Total 2560 exemplars 1184 exemplars 
 

4.3.4 Output Comparison 

Since the main focus of the different aggregation methodologies are its effects on the 

hierarchical simulation, two levels need to be addressed for output comparison which are 

the lower- and higher-level outputs.  What follows next are the applicable comparisons at 

the different levels.  Recall at this time the eight alternate aggregation methods: 

(1) Method 1 (M1) – Mean ( ilY ) 

(2) Method 2 (M2) – Normal ( , il
sY
J

) 

(3) Method 3 (M3) – Control Variate (CV) Technique Mean ( l l( )iYμ β ) 

(4) Method 4 (M4) – l l( ) CV 11Normal  ( , )
i iY Y sεμ β μ σ∼  

(5) Method 5 (M5) – Distribution Fitting 

(6) Method 6 (M6) – Regression 

(7) Method 7 (M7) – Artificial Neural Network (ANN) 

(8) Method 8 (M8) – MetaSim 
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  As far as implementing the eight alternate aggregation methods discussed in 

Chapter 3, MetaSim is not implemented for the FTM due to the complexity of the 

simulation model and therefore no results are shown for this particular aggregation 

method.  However, in order to demonstrate this technique, MetaSim is implemented in 

the next chapter for the ALS Sortie Generation Model. 

4.3.4.1 Lower-Level Model 

For the flying training model, the direct output of Models A and B were used as the input 

into Model C for the Direct Method.  For example, let i = 1, 2, 3 where i = 1: C-5 ACAR 

TiS, i = 2: KC-135 PIQ TiS, i = 3: KC-135 IAC TiS and Ki = number of individuals in 

pilot type i.  Thus, in Scenario 1 there are K1 = 11 TiS generated per replication by the C-

5 ACAR pilots, K2 = 87 TiS generated per replication by the KC-135 IAC pilots, and K3 

= 206 TiS generated per replication by the KC-135 PIQ pilots; all these TiS are directly 

fed into Model C. Model C receives input from each lower-level model for every 

replication.  To illustrate, let Y1,2,K1,1 be the 11 TiS generated for the C-5 ACAR type, 

replication 2, scenario 1, then the input into Model C is 

[ ]
11,2, ,1 4.3222 4.3222 5.9429 5.9429 8.2608 8.2608 6.5473 6.5473 4.5305 4.5305 7.2744KY =

 
A snap shot of the portion of Base A DM input into Model C is provided in Figure 38. 
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Figure 38 - Base A Simulation Output 
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For methods 1 to 5, all the Direct Method simulation output of the lower-level model is 

used to estimate the inputs into the next higher level (Model C).  For Methods 1 and 2, 

the following equation was used to estimate the means of the DM outputs for both lower-

level models, Bases A and B 

 

=1 1

1 1=   ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑                                (4.2) 

where  i: output type, i = 1,...,I, I = 3 

 j: replication number, j = 1,...,J, J = 117 

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i 

 l: scenario number, l = 1,...,L, L = 32. 

 

Figure 39 illustrates Method 1 as applied to the C-5 ACAR pilot time in system output 

for Base A across the thirty-two scenarios.   
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Figure 39 - FTM Base A C-5 ACAR M1 Aggregation Input 
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In addition to the means calculated for Method 1, Method 2 calculates the required 

standard deviation for input into the Normal distribution.  Figure 40 illustrates Method 2 

as applied to the C-5 ACAR pilot time in system output for Base A across the thirty-two 

scenarios.   

 

5.9329
7.2335
...
6.2643

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

2

32

… …

C-5 ACAR Pilot TiSScenario #

6.3358
6.0437
...
7.1530

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg per rep

6.1236
6.7604
...
6.2726

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Avg across reps

6.1556

6.2383

… …

6.0188

Stdev across reps

0.0461

0.0462

0.0486

Input

Normal (6.1556,0.0461)

Normal (6.2383,0.0462)

Normal (6.0188,0.0486)

1

1

1

1,1, ,2

1,2, ,2

1,117, ,2

                                    1           2       ...      11

Y :      1 4.3012 4.3012 ... 5.2902
Y :      2 9.5750 9.5750 ... 7.2496

   
... ... ... ......
4.9607 4.9607 ... 7.2909Y :117

K

K

K

⎡
⎢

⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,1

1,2, ,1

1,117, ,1

                                1            2         ...      11

Y :      1 5.2959 5.2959 ... 8.2492
Y :      2 4.3222 4.3222 ... 7.2744

   
... ... ... ......
6.2894 6.2894 ... 5.3057Y :117

K

K

K

⎡
⎢
⎢

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

1

1

1

1,1, ,32

1,2, ,32

1,117, ,32

                                    1            2       ...      11

Y :      1 4.3012 4.3012 ... 6.3450
Y :      2 9.3309 9.3309 ... 4.2831

   
... ... ... ......
4.9607 4.9607 ... 6.282Y :117

K

K

K 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Figure 40 - FTM Base A C-5 ACAR M2 Aggregation Input 

A portion of the lower-level output aggregation as input into the higher-level model for 

both Methods 1 and 2 are presented in Table 32.  M3 and M4 HL input data are generated 

in a similar fashion as Methods 1 and 2; therefore the generation portion is not 

demonstrated here.  However, a snap-shot of the higher-level model input for Methods 3 

and 4 are presented in Table 33.  Recall that the only difference between Methods 1 and 2 

versus Methods 3 and 4 are the ways in which the means and standard deviations are 

calculated, under the assumption that a control variate technique is implemented in the 

simulation model.  Recall from Table 20 the lower-level model output designators which 

are used for variable headings in Tables 32 and 33.  The standard error is designated as 

se. 
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Table 32 - FTM M1 and M2 Input Data 

Scenario  YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1557 0.0462 12.6808 0.0316 6.4191 0.0266 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

2 6.2384 0.0462 14.0754 0.0632 7.7006 0.0537 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

… … … … … … … … … … … … … 

32 6.0188 0.0487 14.6932 0.0830 8.0567 0.0885 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280

 

Table 33 - FTM M3 and M4 Input Data 
Scenario  YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1688 0.0319 12.9598 0.0946 6.6167 0.0516 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

2 5.7931 0.1040 13.7454 0.0921 7.4438 0.1014 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

… … … … … … … … … … … … … 

32 6.0263 0.0379 14.1405 0.1654 7.9448 0.2385 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386

 

Tables 34 and 35 depict a portion of Methods 5 and 6 representations of the lower-level 

models output as input into Model C. 

Table 34 - FTM M5 Input Data 
Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 (4+11*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+8.94*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

2 (4+9*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+16*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11))  (6+65*BETA(1.25,5.11))

… …  …  …  …  …  … 

32 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+27*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11))  (6+24*BETA(1.25,5.11))

 

Table 35 - FTM M6 Input Data 
Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 6.1682 12.6273 6.3018 23.2866 10.1925 8.7431 

2 6.2773 14.1993 7.6807 23.2866 10.1925 8.8799 

… …  …  …  …  …  … 

32 6.0750 14.4875 7.7242 26.3327 32.1215 9.3086 

 

Next we investigate the model aggregation representation of M7 (ANN) as input 

into Model C and discuss the process on how we obtained the final model chosen as the 

input into Model C.  Three predictive ANN models (FANN, RBF, and GRNN) were 

investigated and evaluated for the effects of the different parameters (as it pertains to a 

specific type of ANN) on model performance.  For model performance we used the 

average RMSE for the three lower-level outputs to determine the “best” model.  In 

addition to the RMSE criteria, ANN model run time was also considered, when 
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applicable.  One major advantage of using an ANN as a metamodeling technique is its 

predictive capability even in the absence of data; that is, as long as the new inputs are 

within the range of the original training data, the ANN are able to produce predictions 

that can be used as the input into the next level of the hierarchy.  Also, unlike traditional 

models like regression, ANNs are able to produce more than one output simultaneously.  

We used the hold-out method for the training/testing data split.  Recall from Table 31 that 

a total of 2,560 training exemplars and 1,184 testing exemplars were used for each lower 

level model.  Each exemplar consisted of eight elements (X1, X2, X3, X4, X5, Y1, Y2, Y3) 

specific to the lower-level Models A and B, where the first five elements were used as the 

input variables and the last three elements were the output variables.   

  For the feed-forward ANN, we trained the network on a single hidden layer 

[Hornik et al., 1989] and used a linear transfer function (purelin in Matlab) at the output 

layer.  The number of nodes in the hidden layer (neurodes) was varied from two to 

twenty, based on the heuristic suggested in Looney [1997:91-92].  Two different transfer 

functions: log-sigmoid (logsig in Matlab) and the hyperbolic tangent sigmoid (tansig in 

Matlab) were also allowed to vary.  Since the newff function in Matlab produces different 

predictions every time the routine is run without establishing any initial weights and/or 

biases (due to the different starting point in the re-initialization of the weights and 

biases), the average of 30 feed-forward runs were used to determine which structure (for 

the different combination of transfer function and neurodes) had the lowest RMSE.  The 

data pre-processing performed on the input feature data was normalization between 0 and 

1 [Looney, 1997:88].  The training parameters used were: mean squared error goal = 

0.0001 and the number of iterations for training = 5000 epochs.  Overall, 38 sets of 

FANN models were evaluated at each lower level model.  The corresponding figures for 

the number of neurodes versus RMSE FANN analysis are displayed in Figures 41 and 42 

for Bases A and B, respectively.    
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Figure 41 - Base A FANN RMSE 
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Figure 42 - Base B FANN RMSE 

 For the radial basis function (RBF) neural network the Matlab function newrb was 

used and the parameters that were allowed to vary were: the spread (σ = .5:0.1:1.7) and 

the neurodes (MN = 5:50) [Shin and Goel, 2000] for a total of 598 RBF models evaluated 

at each lower level model.  Figures 43 and 44 depict the results on the testing data for the 

RBF for Models A and B, respectively. 

 

 
Figure 43 - Base A RBF RMSE 

 
Figure 44 - Base B RBF RMSE 

 

In the general regression neural network (GRNN) the Matlab function newgrnn 

was used with the same spread variation as the RBF; a total of 13 GRNN models were 

evaluated at each lower-level models.  The form of feature data pre-processing for both 

RBF and GRNN was standardization where each feature column’s mean is transformed 

to zero with a standard deviation of one.  The corresponding figures for the spread versus 

RMSE GRNN analysis are displayed in Figures 45 and 46 for Bases A and B, 

respectively.      
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Figure 45 - Base A GRNN RMSE 
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Figure 46 - Base B GRNN RMSE 

Table 36 summarizes the best structure and the parameters used for each ANN for the 

lower-level analysis of the FTM.  In Table 36, a 5-11-3 structure for the feed-forward NN 

indicates 5 inputs, 1 hidden layer with 11 nodes and 3 outputs.  A Logsig- Purelin transfer 

function indicates a Logsig transfer function in the hidden layer and the Purelin 

corresponds to the transfer function in the outputs.  Note that the GRNN and the FANN 

generated the smallest RMSE, but the run time of the GRNN was significantly shorter 

than that of the FANN, thus GRNN was used as the ANN metamodel for Method 7.  

Table 37 depicts a portion of the M7 lower-level model aggregation input into Model C. 

 

Table 36 - Method 7 FTM ANN Attributes 

ANN Parameters (Base A/B) 
Base A 

Test RMSE 

Base B 

Test RMSE 

 

FANN 

node structure: 5-11-3/5-15-3 

transfer functions: Logsig/Logsig 

run time in secs: ~150K/~155K 

0.5165 3.5425 

 

RBF 

σ : 1.6/1.7 

MN: 43/43 

run time: 12331.8/12689.3 

0.5828 4.3001 

GRNN 
σ : 0.5/0.5 

run time in secs: 122.5/126.2 
0.5165 3.5425 
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Table 37 - FTM M7 (ANN-GRNN) Input Data 
Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 6.1521 12.684 6.4466 23.212 12.332 8.7172 

2 6.2768 14.089 7.6894 23.213 11.577 8.8374 

… …  …  …  …  …  … 

32 6.156 14.488 7.8927 26.259 33.259 9.2633 

4.3.4.2 Higher-Level Model 

The Direct Method approach along with the seven alternate methods described was 

implemented as part of the input for Base C Model.  At the higher-level for the FTM, the 

outputs of interest are total pilot grads (Z1: TPG), Z2: TiS, and mission capability rate (Z3: 

MCR).  After running Models A and B and feeding their output, using the DM and the 

different alternate methods, as an input into Model C, we need to determine if any of the 

alternate methods are significantly different from the Direct Method approach.  For this 

comparative analysis we initially utilize the paired-t confidence interval approach as 

described in Law [2006:552-561] to form the approximate 100(1-α) percent simultaneous 

confidence interval (Bonferroni inequality) where we set the DM approach as the 

standard to compare all other methods to.  We examined the across-scenario comparison 

for the output of Model C.  The initial analysis is to examine how the various aggregation 

techniques can handle reproducing the simulation model means at the replication level 

and therefore validate the techniques’ ability to perform general prediction of the 

simulation model.   

For the across-scenario analysis, we examined the replication-by-replication 

results of Scenarios 1-32.  The partial TPG (Z1), TiS (Z2), and MCR (Z3) results for the 

FTM are shown in Tables 38 to 40 along with the sample means and variances for each 

method, where j is the replication number.   

Table 38 - FTM TPG (Z1) 

j DMj M1j M2j M3j M4j M5j M6j M7j 
1 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 
2 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 
... ... ... ... ... ... ... ... ... 

3744 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 
Mean 499.90 499.94 499.87 499.96 499.83 499.90 499.94 499.87 

Variance 0.3304 0.0610 0.5168 0.0557 0.7021 0.6228 0.0610 0.5160 
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Table 39 - FTM TiS (Z2) 

j DMj M1j M2j M3j M4j M5j M6j M7j 
1 6.2888 6.3773 6.252 6.3773 6.252 6.1618 6.3773 6.4172 
2 6.1568 6.3203 6.3733 6.3203 6.3733 6.1448 6.3203 6.3733 
... ... ... ... ... ... ... ... ... 

3744 6.4213 6.3488 6.4455 6.3488 6.4455 6.8584 6.3488 6.4455 
Mean 6.2669 6.2567 6.2609 6.2752 6.2821 6.2558 6.2567 6.2633 

Variance 0.0152 0.0145 0.0196 0.0137 0.0193 0.0261 0.0145 0.0201 
 

Table 40 - FTM MCR (Z3) 

j DMj M1j M2j M3j M4j M5j M6j M7j 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
... ... ... ... ... ... ... ... ... 

3744 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Variance 2.63E-08 5.96E-09 3.93E-08 7.03E-09 5.41E-08 4.08E-08 5.95E-09 3.93E-08 
 

Since we have seven intervals (g = 7) to construct, we made each interval at level 98.57% 

(1-α/g) to yield an overall confidence level of at least 90%, where α = 0.1.  From this, we 

can deduce (with a confidence level of at least 1-α) that method g differs from our 

standard Direct Method approach if the interval μg-μDM misses zero, and that method g is 

not significantly different from our DM approach if the confidence interval contains zero.  

Tables 41 to 43 show the 98.57% individual confidence intervals for μg-μDM, for g = 

1,..,7 (the seven different alternate methods) for the different Base C Model outputs using 

the paired-t approach to confidence interval formation.  The interval(s) with a single 

asterisk signify those that are not significantly different from the DM approach, 

indicating a good candidate method for aggregation.  In addition, only intervals with an 

asterisk have an accompanying difference in the sample means, M DM−g  (e.g., in 

Table 41, M DM−g is only included for Methods 2, 5, and 7) to evaluate which 

alternative aggregation method is more precise; the smallest absolute difference in the 

sample means is indicated with a double asterisk. 
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Table 41 - Base C TPG (Z1) 98.57% Confidence Interval  
Comparisons with the Standard  

g Method M DM−g  Half-length Interval 

1 Mean n/a n/a (0.0190, 0.0670) 
2 Normal(Mean,se) 0.0340 0.0566 (-0.0905, 0.0227)* 
3 MeanCV n/a n/a (0.0304, 0.0770) 
4 Normal(MeanCV,seCV) n/a n/a (-0.1253, -0.0237) 
5 Dist Fitting 0.0008** 0.0357 (-0.0365, 0.0349)* 
6 Regression n/a n/a (0.0190, 0.0670) 
7 ANN 0.0329 0.0570 (-0.0898, 0.0241)* 

 

Table 42 - Base C TiS (Z2) 98.57% Confidence Interval  
Comparisons with the Standard  

g Method M DM−g  Half-length Interval 

1 Mean 0.0102 0.0184 (-0.0286, 0.0082)* 
2 Normal(Mean,se) 0.0060 0.0260 (-0.0319, 0.0200)* 
3 MeanCV 0.0083 0.0155 (-0.0072, 0.0238)* 
4 Normal(MeanCV,seCV) 0.0152 0.0201 (-0.0049, 0.0354)* 
5 Dist Fitting n/a n/a (-0.0153, -0.0069) 
6 Regression 0.0102 0.0184 (-0.0286, 0.0082)* 
7 ANN 0.0035** 0.0249 (-0.0285, 0.0214)* 

 

Table 43 - Base C MCR (Z3) 98.57% Confidence Interval  
Comparisons with the Standard 

g Method M DM−g  Half-length Interval 

1 Mean n/a n/a (5.4E-06, 1.9E-05) 
2 Normal(Mean,se) 7.7E-06 1.6E-05 (-2.3E-05, 8.0E-06)* 
3 MeanCV n/a n/a (6.9E-06, 2.0E-05) 
4 Normal(MeanCV,seCV) n/a  n/a (-3.3E-05, -4.5E-06) 
5 Dist Fitting 4.8E-07** 9.8E-06 (-9.4E-06, 1.0E-05)* 
6 Regression n/a n/a (5.4E-06, 1.9E-05) 
7 ANN 7.4E-06 1.6E-05 (-2.3E-05, 8.4E-06)* 

 

 The outputs in Tables 41 to 43 indicate which method is most appropriate, when 

comparing the means, as an aggregation method employed at the lower-level for specific 

higher-level outputs.  Note that the methods without the single asterisk (*) signify that the 

output of the means at the higher-level will be statistically different from the DM if these 

methods are implemented as the input for the higher-level model.  As can be seen from 

the confidence interval means comparison for the different outputs for Base C Model, 

Methods 2, 5, and 7 are good candidates as input into the higher level model for the TPG 

and MCR outputs, which indicates that these methods implemented at the lower levels 
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produced statistically similar outputs for the mean in the next higher-level.  For the TiS 

output, all but Method 5 are good candidates for the lower-level aggregation.  In order to 

accommodate all three higher-level outputs, assuming no output prioritization is 

employed, we see that Methods 2 and 7 are common aggregation methods thus a better 

acceptable method for means comparison for this specific simulation.   

 In addition to capturing the means of the simulation for the DM, perhaps 

capturing the distribution of the output at the higher-level for the DM might give us 

another process of portraying the true nature of the simulation model.  To demonstrate 

the graphical comparison method of the different higher-level outputs, we examine the 

graphical comparisons of the DM versus selected alternate aggregation methods for the 

TiS (Z2) output.  Statistically, all but M5 are good candidate aggregation methods for the 

lower-level models.  However, we need to further examine the candidate methods in 

terms of their output distributions at the higher-level.  The graphical comparison looks at 

one scenario at a time (Scenario 3) for the candidate aggregation method with the lowest 

mean absolute difference (M7) to that with the largest mean absolute difference (M4) in 

the means comparison for the TiS output (see Table 42).  The tool used for this graphical 

analysis is ExpertFit®.  Figure 47 depicts the histogram comparison of the selected 

methods while Figure 48 depicts the absolute error plot of the histogram comparison.  

The blue bars in Figure 47 are the histogram of the outputs at the higher-level with the 

Direct Method (no aggregation in the lower-level outputs).  The red and the green bars 

depict the histograms of M4 and M7, respectively.  It is sometimes difficult to assess the 

differences or similarities in the histograms, thus the histogram in Figure 47 is 

accompanied by its corresponding absolute-error plot as shown in Figure 48.  The 

differences are more apparent when utilizing the absolute-error plot to compare 

histograms.  Note that the absolute-error between DM versus M7 is larger than that of 

DM versus M4 indicating that M4 is more similar to the DM in their distributions. 
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Figure 47 - FTM Z2 Histogram Comparison  
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Figure 48 - FTM Z2 Absolute-Error Histogram  
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 Next we examine the distribution function comparisons which are shown in 

Figures 49 and 50.  Similar to the histogram comparison, direct visual comparison of the 

methods using the cdf could be challenging therefore we look at the distribution-function-

differences plot in Figure 50 to compare the distribution functions in Figure 49.  From 

Figure 50, we can visually assess that M4 is more similar to DM than M7.  The 

ExpertFit® graphical output also depicts the mean difference from the compared method 

(DM), which shows that M4 has a lower mean difference than M7, as compared to the 

DM. 
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Figure 49 - FTM Z2 CDF Comparison  
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Figure 50 - FTM Z2 CDF-Differences Plot 

Next we look at the K-S test result in Table 44 at α = 0.10.  Recall that for the K-S test, 

the null hypothesis (H0) is that the compared data are drawn from the same distributions.  

The p-value indicates the α-level at which the null hypothesis will not be rejected.  The 

K-S statistic signifies the maximum distance between the compared distribution 

functions.  Based on Table 44, we can conclude that M4 implemented at the lower-level 

output generates outputs at the higher-level model that comes from the same distribution 

as the DM. 

Table 44 - FTM Z2 K-S Test 

DM vs. Fail to Reject/Reject H0? p-value K-S stat 

M4 Fail to Reject 0.27240 0.1282 

M7 Reject 0.00002 0.3077 
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4.4 Summary 
 
For the Flying Training Model, we performed a logical aggregation at the lower-level 

models and determined that depending on which higher-level model output is deemed 

more important, dictated the type of aggregation that is best implemented at the lower-

level.  Without any sort of prioritization on the importance of the higher-level output, we 

determined that in general, Methods 2 and 7 are good representations of the aggregation 

methods at the lower-level that are common for all three outputs of interest.  We also 

investigated in more detail the TiS output, for a specific scenario, and used some 

graphical comparison methods to compare the higher-level model outputs of the Direct 

Method as compared to the applicable aggregation methods with the smallest mean 

absolute difference (M7) and the largest mean absolute difference (M4).  For this 

additional analysis, we observed that the initial confidence interval method comparison 

does not agree with the graphical and K-S test analysis.  Based on the analysis, M7 is a 

good lower-level aggregation method when seeking similar means in the higher-level 

output while M4 used as an aggregation method at the lower-level produced outputs at 

the higher-level that not only resembles the means, but also mimics the distribution of the 

Direct Method outputs. 

 Keep in mind that M4 aggregation predictions are specific to the data in a given 

scenario while the M7 aggregation predictions are derived according to all the scenarios.  

In other words, the ANN method is trying to conform its predictions to all the available 

data in consideration, looking at all scenarios.  In contrast, M4 predictions are based on 

the data for some specific scenario.   In addition, depending on the use of the higher-level 

simulation model or the needs of the users can drive which aggregation technique is 

better suited at the lower-level aggregations.  As demonstrated for the FTM, depending 

on the type of aggregation technique performed in the lower-levels produced higher-level 

outputs that are similar in the means and/or distribution with that of the Direct Method 

simulation.  Therefore, depending on the goal of the simulation will dictate which type of 

aggregation method is preferred. 
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V. Application II: ALS Sortie Generation Model (ASGM), Results and Analysis 

5.1 Overview 

For the second real world application of our aggregation methodologies we examine the 

Autonomic Logistics Systems (ALS) sortie generation model (SGM) built for a thesis 

effort by Paul Faas [Faas, 2003].  The format of the discussion in this chapter is very 

similar to the FTM and some of the verbiages are even repeated in order to make this 

chapter stand-alone; thus preventing the reader from constantly referring back to the 

previous FTM chapter.  The ASGM was developed to closely represent the current Air 

Force aircraft sortie generation process as depicted in Figure 51. 
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Figure 51 - Sortie Generation Process [Faas, 2003:5, Fig 1] 

 

Although the model has the capability of switching between the prognostics and 

health management (PHM) being on or off, which is the difference between having an 

ALS system or baseline (no ALS) system, our motivation is not to compare between 
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systems.  Rather, our task is to determine what part of the model (structural aggregation) 

can be aggregated and later determine in the analysis which aggregation methodology is 

best suited for this specific model.  Therefore, we will determine which part of the model 

can be structurally aggregated using the version of the model in which the ALS system is 

activated and then apply the different aggregation methodologies to the ALS sortie 

generation model.  The basic process with the PHM turned on is illustrated in Figure 52. 
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Figure 52 - Sortie Generation Process with PHM [Miller et al., 2007:4, Fig 2] 

After investigation of the interaction structure between sub-modules in the model, 

the following figure, as depicted in Figure 53, has been derived and will be used for the 

decomposition of the ALS sortie generation model. 
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Figure 53 - Modified Sortie Generation Process with PHM (Detailed Structure) 
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5.2 ALS Sortie Generation Model 

5.2.1 Model Assumptions 

The decomposable portion of the ASG Model will be considered the submodel 

representation and the entire ASG Model as the full model (or higher-level) 

representation, i.e., the entire ASG Model will be reliant on the output of the portion of 

the model that is aggregated as part of its input.  Section 5.5.1 discusses how to identify 

the portion of the ASG Model that can be aggregated when the structural decomposition 

method is performed.  In our application we need to be able to identify the portion of the 

model that can be aggregated in order to apply our methodologies.  For instance, if we 

wanted to isolate the unscheduled maintenance sub-module and replace it with one of our 

aggregation techniques, we first need to justify that this specified sub-module is indeed 

decomposable. 

5.2.2 Model Description 

The ASGM was originally built in ARENA™ Version 5.0.  The model simulates the 

operations of the F-16 aircraft sortie generation at Hill Air Force Base with a focus on the 

failure and maintenance of the four line replaceable units (LRUs) that make up the 

AN/APG-68 radar [Faas and Miller, 2003].  The supply system and the manpower 

resources are also modeled minimally and with several caveats [Faas and Miller, 

2003:1022].  The simulation examines an Air Expeditionary Force (AEF) scenario to 

ascertain the wing’s deployment effectiveness in terms of minimal last minute inspection 

and parts swapping [Faas, 2003:4].  The simulation is built to run on a 5-day week, 24-

hour operation, and an extended 5-year look.   

5.2.3 Simulation Input and Output Parameters  

There are twenty-two different input parameters, which are a collection of variables and 

attributes, which can be manipulated for this model.  The twenty-two inputs are listed in 

Table 45. 
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Table 45 - ALS Sortie Generation Model Input Features [Faas, 2003:35, Table 4] 
Feature/Variable Description Initial Value Units 

attANTfail Time until failure of the ANT LRU  375 hours 
attAPSPfail Time until failure of the APSP LRU  425 hours 
attDMTfail Time until failure of the DMT LRU  550 hours 
attMLPRFfail Time until failure of the MLPRF LRU  275 hours 
varSupplyLevelANT Initial supply of ANT LRUs  7 N/A 
varSupplyLevelAPSP Initial supply of APSP LRUs  7 N/A 
varSupplyLevelDMT Initial supply of DMT LRUs  7 N/A 
varSupplyLevelMLPRF Initial supply of MLPRF LRUs  7 N/A 
varOrderLevelANT Order level for the ANT LRU  6 N/A 
varOrderLevelAPSP Order level for the APSP LRU 6 N/A 
varOrderLevelDMT Order level for the DMT LRU 6 N/A 
varOrderLevelMLPRF Order level for the MLPRF LRU 6 N/A 
varTakeoff1 Takeoff time for the 1st group of 4 A/C 0800 hours 
varTakeoff2 Takeoff time for the 2nd group of 4 A/C 1000 hours 
varTakeoff3 Takeoff time for the 3rd group of 4 A/C 1200 hours 
varTakeoff4 Takeoff time for the 4th group of 4 A/C 1400 hours 
varPreflightFail A/C that will fail the preflight inspection  5 percent 
varFalseAlarm A/C that will experience a false alarm 3 percent 
PHMLevel Level for aircraft to receive maintenance 10 hours 
PHMBit Determines if PHM if on = 1 or off = 0 1 N/A 
varSecondPHMLevel Level for aircraft to wait for maintenance and 

return to taxi or flying 
2 hours 

NumTurn Number of A/C to perform a turnaround flight 2 N/A 
 

Based on the input analysis in Faas [2003], the author and the SMEs determined 

that the most critical input features as it relates to the key higher-level outputs were the 

PHM Level (PHML) and the False Alarm Percentage (FAP).  Let these two input factors 

be the submodel representation and denoted by X1, and X2, respectively.  To examine the 

space of these two features a 32 = 9 (i.e., low, high, and a center point) full factorial 

design of experiments were deemed adequate, which is depicted in Table 46.  For the 

FAP feature, the space covers the worst case, lowest setting (with an operating ALS, 

there would always be a false alarm), and a center point.  The PHML feature is the time 

in hours prior to the failure of the line replaceable units (LRUs).  The lowest setting for 

the PHML represents that the system was predicting failure to a more accurate level, 

while the highest hour level setting represents that the system was not as accurate in 

predicting when the failure would occur. 
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Table 46 - ASGM LL Key Input Features [Faas, 2003:70, Table 6] 
Feature/Variable Low Center High Feature Designator 
False Alarm (%) 1 3 5 X1 
PHM Level (hours) 5 10 15 X2 

 
 

Faas [2003] lists 17 output performance measures that were important to the ALS 

Sortie Generation Model simulation.  However, a scoped down version which includes 

only the key measures of effectiveness (key outputs) that is most representative of an 

aircraft equipped with an ALS was derived and are listed in Table 47:  Mission Capable 

Rate (MCR), Not-mission Capable for Maintenance (NMCM), Not-mission Capable for 

Supply (NMCS), and the Flying Scheduling Effectiveness Rate (FSER).  Let these four 

output measures for the higher level representation be denoted by Z1, Z2, Z3, and Z4.   
 

Table 47 - ASGM HL Key Output Performance Measures 

HL Output Short Name Output 
Designator 

Mission Capable Rate MCR Z1 
Not-mission Capable for Maintenance NMCM Z2 
Not-mission Capable for Supply NMCS Z3 
Flying Scheduling Effectiveness Rate FSER Z4 

 

The intermediate output/input data will be determined based on the result of the 

structural decomposition discussed in Section 5.3.1. 

5.3 Results and Analysis 

5.3.1 Mathematical Representation of the ALS Sortie Generation (ASG) Model 

The decomposition examined for the ALS sortie generation model is that of the structural 

decomposition where the aggregation for within-a-model is accomplished (i.e., the 

identified decomposable portion of the ASGM is considered as the submodel and is 

aggregated).  For this within-a-model aggregation example the entire significant 

input/output of the decomposable portion of the model is aggregated as a whole for a 

more detailed look at the model.   
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To illustrate the mathematical framework of the ASGM, we will demonstrate and 

define the network structure of Figure 53.  Consider in Figure 54 the directed network 

graph of the ASG model.   
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Figure 54 - ASG Model Network Graph 

 

In the graph, as depicted in Figure 54, its specific graph representation is as follows 

 
G = {V(G), E(G), R(G)}    (5.1) 

 where: 
  V(G) = {N1, N2, ..., N14}, is the vertex set, 
  E(G) = {e1, e2, ..., e22}, is the edge set, 
  R(G) = {eN1→N2, eN2→N3, ..., eN12↔N14, eN12→N2}, is the set of relations. 
 

Thus, for the network graph in Figure 54, its specific adjacency and incidence matrices 

are depicted in Figures 55 and 56 as follows, respectively 
 



 132

ASGM

                             1 2 3 4 5 6 7 8 9 10 11 12 13 14                           

1 0 1 0 0 0 0 0 0 0 0 0  0 0  0
2 0 0 1 0 0 0 0 0 0 0 0  0 0  1
3 0 0 0 1 0 0 0 0 0 0 0  0 0  0
4 0 0 0 0 0 0 0 0 0 0 1  0 0  0
5 0 0 0 0 0 1 0 0 0 0 0  0 0  1
6 0 0 0 0 0 0 1 0 0 0 0  0 0  0
7 0

( )  
8
9
10
11
12
13
14

A G =
0 0 0 0 0 0 1 0 0 1  0 0  1

     
0 0 0 0 0 0 0 0 1 0 0  0 0  0
0 1 0 0 0 0 0 0 0 1 0  0 0  0
0 0 0 0 0 0 0 0 0 0 1  0 0  0
0 0 0 0 1 0 1 0 0 0 0  1 0  1
0 1 0 0 0 0 0 0 0 0 0  0 1  1
0 1 0 0 0 0 0 0 0 0 0  0 0  0
0 0 0 0 0 0 0 0 0 0 0  1 0  0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

Figure 55 - Adjacency Matrix of the ASG Model 
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0   0    0  0   1   0    0   0 0    0    0     0     0     0     1     0     0     0    0     1       0   0
0   0    0  0   1   1    0   0 0    0    0     0     0     0     0     0     0     0     0     0      0    0
0   0    0  0   0   1    1   0 0    0    0     0     0     0     0     1     1   0     0    0      0    0
0   0    0  0   0   0    1   1 0    0    0     1     0     0     0     0     0    0      0     0      0    0
0   0    0  0   0   0    0   1 1    0    0     0     0     0     0     0    0    1     0    0      0    0
0   0    0  0   0   0    0   0 1    1    0     0     0     0     0     0     0    0     0    0      0    0
0   0    0  1   0   0    0   0 0    1    1     0     0     0     0     0     1   0     1    1      0    0
0   0    0  0   0   0    0   0 0    0    1     1     0     0     0     0     0    0     0    0      1    1
0   0    0  0   0   0    0   0 0    0    0    1     1     0     0     0     0    0     0    0      0    0
0   0    0  0   0   0    0   0 0    0    0    0     0     1     1     1     0    0     1    0      1    0
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Figure 56 - Incidence Matrix of the ASG Model 

 

Now that the model structure has been visually, by means of a network graph, and 

mathematically, by defining the elements of the network graph, represented we now 

proceed with the model decomposition procedure for the ASG Model where we consider 
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its network graph in Figure 54.  The visual assessment of which subnetworks for the ASG 

Model network graph cluster together is quite difficult with just the visualization.  In 

order to accomplish the determination of which subnetworks cluster together, we will 

now utilize the decomposition method.  First recall the edge incidence matrix M(GASGM) 

for the ASG Model network graph as previously derived and is shown in Figure 56.  The 

weight matrix W of the edges and the pseudo-covariance matrix C are shown in Figures 

57 and 58, respectively.  The weight matrix W represents the communication/interaction 

between the nodes for the ASG Model.  A value of wi,j = 2 represents a two-way 

communication between the nodes like in nodes N12-N14 (i.e., e21) and N7-N11 (i.e., 

e17). 
 

ASGM

                                   1  2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 1 0 0 0 0 0 0 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
2 0 1 0 0 0 0 0 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
3 0 0 1 0 0 0 0 0 0 0  0 0
4
5
6
7
8
9
10
11

    ( )  
12
13
14
15
16
17
18
19
20
21
22

W G =

0  0   0 0 0   0 0   0   0 0
0 0 0 1 0 0 0 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 1 0 0 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 1 0 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 1 0 0 0  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 1 0 0  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 1 0  0 0  0 0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 1  0 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  1 0  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 1  0  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 0  1  0   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 0  0  1   0 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 0  0  0  1 0 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 0  0  0   0 1 0   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0  0 0  0  0   0 0 2   0 0   0   0 0
0 0 0 0 0 0 0 0 0 0   0 0  0  0   0 0 0   1 0   0   0 0
0 0 0 0 0 0 0 0 0 0   0 0  0  0   0 0 0   0 1   0   0 0
0 0 0 0 0 0 0 0 0 0   0 0  0  0   0 0 0   0 0   1   0 0
0 0 0 0 0 0 0 0 0 0   0 0  0 0   0 0 0   0 0   0   2 0
0 0 0 0 0 0 0 0 0 0   0 0  0  0  0 0 0   0 0   0   0 1
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Figure 57 - ASG Model Network Graph Edge Weighting Matrix 
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ASGM

                                 1  2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 0 0 0 0 0 0 0 0 0 0 0   0
2 1 6 1 0 0 0 0 0 1 0 0 1 1   1
3 0 1 2 1 0 0 0 0 0 0 0 0 0   0
4 0 0 0 2 0 0 0 0 0 0 1 0 0   0
5 0 0 0 0 3 1 0 0 0 0 1 0 0   1
6 0 0 0 0 1 2 1 0 0 0 0 0 0   0
7 0 0 0 0 0 1 5 1 0 0 2 0 0   1

    ( )  
8 0 0
9
10
11
12
13
14

C G =
0 0 0 0 1 3 1 0 0 1 1   0

0 1 0 0 0 0 0 1 3 1 0 0 0   0
0 0 0 0 0 0 0 0 1 2 1 0 0   0
0 0 0 1 1 0 2 0 0 1 7 1 0   1
0 1 0 0 0 0 0 1 0 0 1 5 1   2
0 1 0 0 0 0 0 1 0 0 0 1 2   0
0 1 0 0 1 0 1 0 0 0 1 2 0   6
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Figure 58 - ASG Model Network Graph Pseudo-Covariance (C) Matrix 

 
The corresponding D matrix and the calculated R matrix from the pseudo-covariance 

matrix C is displayed next in Figure 59 and Figure 60, respectively. 
 

ASGM

1     0     0     0     0     0     0     0     0     0     0     0     0     0
0 0.408     0     0     0     0     0     0     0     0     0     0     0     0
0     0 0.707     0     0     0     0     0     0     0     0     0

 ( ) = D G

    0     0
0     0     0 0.707     0     0     0     0     0     0     0     0     0     0
0     0     0     0 0.577     0     0     0     0     0     0     0     0     0
0     0     0     0     0 0.707     0     0     0     0     0     0     0     0
0     0     0     0     0     0 0.447     0     0     0     0     0     0     0
0     0     0     0     0     0     0 0.577     0     0     0     0     0     0
0     0     0     0     0     0     0     0 0.577     0     0     0     0     0
0     0     0     0     0     0     0     0     0 0.707     0     0     0     0
0     0     0     0     0     0     0     0     0     0 0.378     0     0     0
0     0     0     0     0     0     0     0     0     0     0 0.447     0     0
0     0     0     0     0     0     0     0     0     0     0     0 0.707     0
0     0     0     0     0     0     0     0     0     0     0     0     0 0.408
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Figure 59 - ASG Model Network Graph D Matrix 
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    1 0.408     0     0     0     0     0     0     0     0     0     0     0     0
0.408     1 0.289     0     0     0     0     0 0.236     0     0 0.183 0.289 0.167
    0 0.289     1   0.5     0     0     0     0     0     0     0    

  

 0     0     0
    0     0   0.5     1     0     0     0     0     0     0 0.267     0     0     0
    0     0     0     0     1 0.408     0     0    0     0 0.218     0     0 0.236
    0     0     0     0 0.408     1 0.316     0     0     0     0     0     0     0
    0     0     0     0     0 0.316     1 0.258    0     0 0.338     0     0 0.183
    0     0     0     0     0     0 0.258     1 0.333     0     0 0.258 0.408     0
    0 0.236     0     0     0     0     0 0.333     1 0.408     0     0     0     0
    0     0     0     0     0     0     0     0 0.408     1 0.267     0     0     0
    0     0     0 0.267 0.218     0 0.338     0    0 0.267     1 0.169     0 0.154
    0 0.183     0     0     0     0     0 0.258     0     0 0.169     1 0.316 0.365
    0 0.289     0     0     0     0     0 0.408     0     0     0 0.316     1     0
    0 0.167     0     0 0.236     0 0.183     0     0     0 0.154 0.365     0     1
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Figure 60 - ASG Model Network Graph Pseudo-Correlation (R) Matrix 

 
We now need to assess how many subnetworks are present in the larger ASGM 

network.  Table 48 depicts the results of performing the principal component analysis on 

the pseudo-correlation matrix R. 
 

Table 48 - ASG Model Network Graph Extracted Factors 

Factor Eigenvalue Percent of 
Variation 

Cumulative Percent 
of Variation 

1 2.0922 14.9446 14.9446 
2 1.6841 12.0291 26.9736 
3 1.5827 11.3051 38.2787 
4 1.4533 10.3807 48.6595 
5 1.3213 9.4382 58.0976 
6 1.2231 8.7366 66.8343 
7 1.059 7.5644 74.3987 
8 0.8893 6.3524 80.7511 
9 0.7271 5.1934 85.9445 

10 0.6271 4.4794 90.4239 
11 0.5074 3.6241 94.0479 
12 0.4628 3.306 97.354 
13 0.1921 1.372 98.726 
14 0.1784 1.274 100 

 
 

Based on the result of the principal component analysis on the R matrix and using 

Kaiser’s criterion, we retain seven factors.  Next we need to find which nodes belong to 

what subnetworks.  After performing a principal component analysis on the C matrix, we 

obtain its initial factor loading in Table 49, followed by its corresponding quartimax-, 

varimax-, and equamax-rotated factor matrices in Tables 51, 51, and 52, respectively.   
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Table 49 - ASG Model Network Graph Initial Factor Loadings - C 
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 -0.090 0.266 -0.267 0.115 -0.143 0.105 -0.027 
2 -0.342 0.719 -0.501 0.181 -0.210 0.112 -0.024 
3 -0.092 0.196 -0.302 0.197 -0.087 0.221 -0.049 
4 -0.170 -0.143 -0.216 0.247 0.139 0.165 -0.017 
5 -0.290 -0.127 0.148 0.240 -0.232 -0.405 -0.726 
6 -0.139 -0.135 -0.020 -0.189 -0.391 -0.089 -0.596 
7 -0.502 -0.382 -0.159 -0.525 -0.460 0.223 0.108 
8 -0.229 0.108 -0.118 -0.750 0.247 -0.183 -0.122 
9 -0.118 0.220 -0.403 -0.234 0.076 -0.738 0.220 

10 -0.177 -0.130 -0.270 0.077 0.208 -0.530 0.247 
11 -0.704 -0.535 -0.254 0.270 0.239 0.024 0.015 
12 -0.559 0.377 0.323 -0.171 0.520 0.169 -0.108 
13 -0.212 0.351 -0.139 -0.308 0.294 0.146 -0.300 
14 -0.653 0.241 0.557 0.130 -0.293 -0.153 0.222 

 
 

Table 50 - ASG Model Network Graph Quartimax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 0.004 0.442 -0.002 -0.002 -0.012 -0.010 -0.010 
2 -0.156 0.946 0.030 -0.183 0.016 -0.145 -0.004 
3 0.059 0.455 -0.130 0.013 0.012 0.084 0.018 
4 0.071 0.139 -0.418 0.025 0.032 0.043 0.033 
5 -0.177 -0.037 -0.129 0.019 0.145 -0.050 -0.923 
6 0.078 0.030 0.093 -0.056 -0.277 0.102 -0.695 
7 -0.102 -0.001 -0.135 -0.048 -0.965 0.029 -0.097 
8 0.120 -0.151 0.179 -0.676 -0.339 -0.327 -0.049 
9 0.014 0.106 0.167 -0.114 -0.032 -0.909 -0.002 

10 -0.025 -0.079 -0.238 0.063 0.056 -0.662 0.051 
11 -0.141 -0.041 -0.931 -0.038 -0.213 -0.174 -0.108 
12 -0.436 -0.014 -0.170 -0.799 0.142 0.111 0.096 
13 0.095 0.211 0.022 -0.650 0.003 0.025 -0.058 
14 -0.974 0.024 0.020 -0.019 -0.101 -0.018 -0.094 

 
 

Table 51 - ASG Model Network Graph Varimax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 0.005 0.442 -0.006 -0.005 -0.011 -0.009 -0.010 
2 -0.155 0.946 0.021 -0.186 0.017 -0.143 -0.003 
3 0.060 0.454 -0.134 0.010 0.014 0.085 0.018 
4 0.070 0.135 -0.420 0.022 0.032 0.042 0.033 
5 -0.178 -0.038 -0.127 0.019 0.138 -0.051 -0.924 
6 0.078 0.031 0.093 -0.053 -0.281 0.103 -0.694 
7 -0.103 0.001 -0.133 -0.038 -0.966 0.031 -0.091 
8 0.116 -0.150 0.182 -0.671 -0.347 -0.328 -0.047 
9 0.014 0.109 0.168 -0.112 -0.035 -0.908 -0.001 

10 -0.026 -0.079 -0.236 0.064 0.055 -0.663 0.051 
11 -0.145 -0.049 -0.929 -0.035 -0.217 -0.175 -0.107 
12 -0.442 -0.019 -0.168 -0.798 0.135 0.108 0.095 
13 0.091 0.207 0.021 -0.651 -0.003 0.024 -0.059 
14 -0.974 0.027 0.024 -0.012 -0.102 -0.018 -0.092 

 
 



 137

Table 52 - ASG Model Network Graph Equamax Rotated Factor Matrix - C 
Node Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 -0.017 0.442 -0.008 -0.006 0.011 -0.005 -0.009 
2 0.000 0.945 0.151 0.022 0.197 -0.136 -0.003 
3 -0.147 0.449 -0.062 0.019 -0.001 0.088 0.017 
4 -0.425 0.123 -0.067 0.033 -0.017 0.042 0.031 
5 -0.123 -0.040 0.182 0.123 -0.020 -0.053 -0.925 
6 0.094 0.035 -0.076 -0.292 0.048 0.104 -0.689 
7 -0.128 0.009 0.105 -0.968 0.013 0.037 -0.076 
8 0.190 -0.150 -0.104 -0.367 0.660 -0.329 -0.042 
9 0.169 0.119 -0.014 -0.041 0.108 -0.907 0.001 

10 -0.232 -0.080 0.028 0.051 -0.067 -0.664 0.050 
11 -0.924 -0.067 0.156 -0.225 0.029 -0.178 -0.105 
12 -0.161 -0.034 0.458 0.117 0.794 0.103 0.093 
13 0.017 0.198 -0.081 -0.017 0.656 0.022 -0.059 
14 0.034 0.036 0.974 -0.103 -0.008 -0.016 -0.088 

 

After examining Tables 50 and 51, we observe that the structure of the quartimax- 

and varimax-rotated loadings are “simple” enough for a meaningful interpretation.  For 

completeness, we then perform a different orthogonal rotation on the C matrix using the 

equamax method.  This other rotation is depicted in Table 52 and we can observe that the 

equamax rotation produced a very similar clustering result as the other two rotations 

except for the swapping on nodes clustering for Factors 1 and 3.  Based on the varimax 

rotation, we see: node 14 load on Factor 1, nodes 1, 2 and 3 load on Factor 2, nodes 4 and 

11 load on Factor 3, nodes 8, 12 and 13 load on Factor 4, node 7 load on Factor 5, nodes 

9 and 10 load on Factor 6, and that nodes 5 and 6 load on Factor 7.   

At this point, based on the decomposition method we can now assess which 

portions of the within-a-model can be aggregated.  We will focus our attention at this 

time on aggregating the unscheduled maintenance (node 14) portion of the model.  For 

this portion of the model, the output performance measures of interest are pre-flight 

failure time in system (PFFTiS), supply time in system (STiS) and radar failure time in 

system (RFTiS) which are listed in Table 53.  Let these three outputs from the submodel 

be the input factors for the higher-level representation and denoted by Y1, Y2, and Y3, 

respectively. 
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Table 53 - ASGM Submodel Key Output Performance Measures 

LL Output Short 
Name 

Output 
Designator

Pre-flight Failure Time in System PFFTiS Y1 
Supply Time in System STiS Y2 
Radar Failure Time in System RFTiS Y3 

5.3.2 Determining the number of replications  

Faas [2003:64] determined that the appropriate number of replications for the ALS Sortie 

Generation Model should be 30.  However, for our purposes, especially in the application 

of the regression and the ANN for the aggregation methods, the number of replications 

was increased from 30 to 100.  This enables the application of the 5-fold cross-validation 

method for use in the training and test analysis of both methods. 

5.3.3 Training/Testing Data set-up 

The k-fold cross-validation, with k = 5, was used [Devijver and Kittler, 1982:10] in the 

evaluation of the ASGM for the regression and the ANN techniques.  This method 

partitions the data into two groups, k-times, and is used to train the predictor and the other 

remaining set is used to test the predictor.  We employed the general rule of ~80/20 data 

partitioning for training and testing data for each fold, i.e., the input parameter settings 

used from the computer simulation to train the ANN and the Regression are the first 80 

replications per scenario and are depicted in Table 54.  The last 20 replications within a 

scenario were used to examine the ability of the approximating functions to generalize to 

previously unseen combination samples.  All the 9 different scenarios were replicated 

100 times, for a total of 900 sample data points (or exemplars).  Thus, for each submodel 

output, 720 data points were used to train the neural network and 180 data points were 

used for testing.  This procedure was repeated 5-times with different training/testing sets 

and the average from all the folds is what the reported values are based on.  The test 

prediction outputs are used to feed the higher-level model (full model) and its output is 

compared to the output when the Direct Method is employed.   
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Table 54 - ASGM 5-fold Training/Testing Data Set-up 

Fold  Scenario # 
Training Data: 
Replication # 

Testing Data: 
Replication # 

1 

1 1-80 81-100 
2 1-80 81-100 
... ... ... 
9 1-80 81-100 

Fold 1 Total 720 180 
… … … … 
5 1 21-100 1-20 
 2 21-100 1-20 
 ... ... ... 
 9 21-100 1-20 

Fold 5 Total 720 180 
All Folds Total 3600 exemplars 900 exemplars 

 

5.3.4 Output Comparison 

Since the main focus of the different aggregation methodologies are its effects on the 

hierarchical simulation, two levels need to be addressed for output comparison which are 

the lower- and higher-level outputs.  What follows next are the applicable comparisons at 

the different levels.  All eight alternate aggregation methods discussed in Chapter 3 are 

implemented for the ASGM.  In addition, the extension to the regression and ANN 

methods where we add controls to the inputs of these methods are investigated.  In 

keeping with the numbering scheme of the different aggregation methods, the extension 

to M6 and M7 are denoted M6.1 and M7.1, respectively.  Thus, the ten aggregation 

methods examined for the ASGM are: 

(1) Method 1 (M1) – Mean ( ilY ) 

(2) Method 2 (M2) – Normal ( , il
sY
J

) 

(3) Method 3 (M3) – Control Variate (CV) Technique Mean ( l l( )iYμ β ) 

(4) Method 4 (M4) – l l( ) CV 11Normal  ( , )
i iY Y sεμ β μ σ∼  

(5) Method 5 (M5) – Distribution Fitting 

(6) Method 6 (M6) – Regression 

(7) Method 6.1 (M6.1) – Regression with Controls 

(8) Method 7 (M7) – Artificial Neural Network (ANN) 
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(9) Method 7.1 (M7.1) – ANN with Controls 

(10) Method 8 (M8) – MetaSim 

5.3.4.1 Submodel 

For the ASGM, the direct output of the unscheduled maintenance block, which we will 

consider at this point as the submodel, is used as the input into the higher-level (full 

model) for the Direct Method.  Technically, there is nothing that needs to be done for the 

Direct Method at this point except for capturing the outputs of the full model with none 

of the decomposable portions aggregated.  However, in order to apply the different 

aggregation techniques we need to ensure we identify the outputs of interest of the 

submodel for later aggregation.  For the ASGM, let ijklY represent a row input where i: 

output type, i = 1,...,I, I = 3,  j: replication number,  j = 1,...,J, J = 100, k: k = 1,...,Ki, Ki = 

number of entities in output type I, and l: scenario number, l = 1,...,L, L = 9.  Let i = 1, 2, 

3 where i = 1: PFFTiS, i = 2: STiS, i = 3: RFTiS and Ki = number of entities collected of 

type i.  For example, in Scenario 1, replication 1 there are 945 K1, 980 K2 and 980 K3 TiS 

generated; all of these TiS are used during the simulation run.  To demonstrate, let 

Y1,100,K1,1 be the 914 PFFTiS generated for replication 100, scenario 1, then a piece of its 

first two and last generated PFFTiS input form is  

 

[ ]
11,100, ,1

                     1         2        ...     914 
0.784 0.547 ... 0.720 .KY =

 

 

A portion of the ASGM submodel (unscheduled maintenance block) output is provided in 

Figure 61. 
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Figure 61 - ASGM Submodel Direct Method Output 

For methods 1 to 5, all the Direct Method simulation output of the submodel is used to 

estimate the inputs into the next higher level, i.e., no splitting of the data between training 

and testing sets.  For Methods 1 and 2, the following equation was used to estimate the 

means of the DM outputs for the submodel  

 

=1 1

1 1=   ,
iKJ

il ijkl
j ki

Y Y i l
J K =

⎛ ⎞
∀⎜ ⎟

⎝ ⎠
∑ ∑                                (5.2) 

where  i: output type, i = 1,...,I, I = 3 

 j: replication number, j = 1,...,J, J = 100 

 k: observation number, k = 1,...,Ki, Ki = number of individuals in output type i 

 l: scenario number, l = 1,...,L, L = 9. 

 

Figure 62 illustrates Method 1 as applied to the PFFTiS output across the nine scenarios.   
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Figure 62 - ASGM M1 PFFTiS (Y1) Partial Aggregation Input 

In addition to the means calculated for Method 1, Method 2 calculates the required 

standard deviation for input into the Normal distribution.  Figure 63 illustrates Method 2 

as applied to the PFFTiS output across the nine scenarios.   
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Figure 63 - ASGM M2 PFFTiS (Y1) Partial Aggregation Input 
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A portion of the aggregation input into the higher-level model for both Methods 1 and 2 

are presented in Table 55.  M3 and M4 HL input data are generated in a similar fashion 

as Methods 1 and 2; therefore the generation portion is not demonstrated here.  However, 

a snap-shot of the higher-level model input for Methods 3 and 4 are presented in Table 

56.  Recall that the only difference between Methods 1 and 2 versus Methods 3 and 4 are 

the ways in which the means and standard deviations are calculated, under the 

assumption that a control variate technique is implemented in the simulation model.  

Recall from Table 53 the submodel output designators which are used for variable 

headings in Tables 55 and 56.  The standard error is designated as se. 

Table 55 - ASGM M1 and M2 Input Data 
Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se

1 0.6666 0.0002 0.1666 0.0001 3.2448 0.0009
2 0.6668 0.0002 0.1667 0.0001 3.2444 0.0009
… … … … … … … 
9 0.6670 0.0002 0.1665 0.0001 3.2453 0.0006

 

Table 56 - ASGM M3 and M4 Input Data 
Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se

1 0.6666 0.0001 0.1667 0.000002 3.2445 0.0001
2 0.6667 0.0001 0.1667 0.000002 3.2444 0.0001

… … … … … … … 
9 0.6666 0.0002 0.1667 0.000001 3.2445 0.0001

 
 

Table 57 depicts a portion of Method 5 representations input into the higher-level model.  

Recall that for this method, all the DM submodel output data (i.e., down to the 

observation level where there are 95,443 PFFTiS observations in Scenario 1) within a 

scenario are fed into Arena’s® Input Analyzer to derive a representative distribution.  

Unlike M2 where we assume a normal distribution of the data at the replication level, in 

M5 we let the Input Analyzer provide a theoretical distribution representation.  Also note 

that the standard deviation parameter for the normal distribution in Arena’s® Input 

Analyzer does not divide by the square root of the total number of observations.  The 

third parameter entries for the distributions in Table 57 represent the random number 

seed for the aggregated unscheduled maintenance node. 
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Table 57 - ASGM M5 Input Data 
Scenario Y1 Y2 Y3 

1 (NORM(0.667,0.0589,14)) (0.06+0.21*BETA(4.33,4.20,14)) (2.29+2.04*BETA(7.95,9.04,14)) 

2 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.18,14)) (2.28+2.20*BETA(8.63,11.1,14)) 

… … … … 

9 (NORM(0.667,0.0606,14)) (0.06+0.21*BETA(4.33,4.21,14)) (2.16+2.84*BETA(12.2,19.7,14)) 
 

 

Next in the analysis is the model aggregation representation of M6 (Regression) 

along with the extension to the regression method M6.1 (Regression with Controls) and 

discussion of the process on how we obtained the inputs into the higher-level model.  The 

form of the regression function for prediction for both methods is given by 

 

l
test test trainX bY =     (5.3) 

 

where l testY is the regression test prediction, testX is the new (test) data input and trainb is 

the least squares estimate of the β derived from the training data.  The difference in the 

two methods is in the form of the input matrix used for the training and testing of the 

regression.  For M6, The elements of X only include the two simulation input variables 

(design variables) in the form 

 

11 12

21 22
M6

1 2

1
1

 = 
... ...

1

X

n n

x x
x x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      (5.4) 

 

while the elements of X for M6.1 also includes the 17 collected controls, in addition to 

the design variables, and is in the form 
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     (5.5) 

 

The value of n in the input matrix X for both methods is 720 and 180 for training and 

testing, respectively.  The controls in equation (5.5) were “standardized” using the 

method discussed in Bauer and Wilson [1993] where in addition to the user-given means, 

the number of occurrence and the user-given standard deviation for a specific control are 

taken into consideration in the standardization of the controls.  Tables 58 to 61 depict the 

results of the step-wise variable selection technique on the two input matrix X for M6 and 

M6.1.  For these tables, a value of “1” signifies inclusion in the model, i.e., significant 

factor, while a value of “0” signifies exclusion in the model.  It is interesting to note the 

significant controls related to the specific outputs.  For instance, the significant controls 

related to the Y1 (Pre-flight Failure Time in System) output are the delays due to 

operational check (C15), discrepancy sign-off (C16), and the documentation of corrective 

actions (C17).  On the other hand for Y2 (Supply Time in System), its corresponding 

significant control is the delay due to waiting for parts issue from supply (C13); while for 

Y3 (Radar Failure TiS) its significant factors are the different parts removal delays (C1-

C4) and C13-C17 which are parts issue from supply, parts installation, operational check, 

discrepancy sign-off, and documentation of corrective actions, respectively.   

 

Table 58 - ASGM M6 Significant Factors 
Fold Output X1 X2 Output X1 X2 Output X1 X2 

1 

Y1 

1 0 

Y2 

0 0 

Y3 

0 0 
2 0 0 0 0 0 0 
3 1 0 0 0 0 0 
4 1 0 0 0 0 0 
5 0 0 0 0 0 0 
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Table 59 - ASGM M6.1 Significant Factors for Y1 
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 

1 

Y1 

0  0  0  0  0  0 0 0 0 0 0 0 0 0 0  0  1  1 1
2 0  0  0  0  0  0 0 0 0 0 0 0 0 0 0  0  1  1 1
3 0  0  0  0  0  0 0 0 0 0 0 0 0 0 0  0  1  1 1
4 0  0  0  0  0  0 0 0 0 0 1 0 0 0 0  0  1  1 1
5 0  0  0  0  0  0 0 0 0 0 0 0 0 0 0  0  1  1 1

 

Table 60 - ASGM M6.1 Significant Factors for Y2 
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 

1 

Y2 

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
5 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

 

Table 61 - ASGM M6.1 Significant Factors for Y3 
Fold Output X1 X2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 

1 

Y3 

0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 
2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 
3 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 
4 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 
5 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 

 

It is clear from Tables 58 to 61 that the design variables in the regression model 

for the ASGM offer little to no significant contribution in the prediction of the responses.  

This implies that no matter what value is assigned to the design variables, the regression 

prediction will be the same.  The regression prediction is mostly contained in the 

intercept term β0, which is theoretically identical to taking the mean of the presented data 

for generating a prediction.  It should not be a surprise that the design variables used are 

not necessarily good predictors for the submodel since the significant factor study 

originally conducted in Faas [2003] were not looking at the intermediate outputs (i.e., 

Yi’s) rather the factors deemed significant were as it related to what we are considering in 

the higher-level (i.e., Zi’s).  It is due to this insight that we conducted further 

investigations on the proposed extension to the regression method with a simplified 

simulation model, which is discussed in Section 5.4.  For now, we proceed with the 

resulting predictions of M6 and M6.1 which were used as inputs into the higher-level 

model.  Tables 62 and 63 depict a portion of Methods 6 and 6.1 representation inputs into 

the higher-level model.  It is clear from the comparison of the two sets of predictions that 

the inclusion of controls, in addition to the design variables, in the regression model 
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produced different inputs into the higher-level model.  The utility of the extension, in 

terms of being a better predictor, cannot be directly assessed by merely looking at these 

tables; however, any improvement should manifest itself in the outputs of the higher-

level model.  

 

Table 62 - FTM M6 (Regression) Input Data 
Scenario Y1 Y2 Y3 

1 0.6669 0.1666 3.2447
2 0.6669 0.1666 3.2447

… … … … 
9 0.6673 0.1666 3.2447

 

Table 63 - ASGM M6.1 (Regression with Controls) Input Data 
Scenario Y1 Y2 Y3 

1 0.6665 0.1662 3.2492
2 0.6665 0.1667 3.2427
… … … … 
9 0.6678 0.1655 3.2436

 

Next we investigate the model aggregation representation of M7 (ANN) and 

discuss the process on how we obtained the final model chosen as the input into the 

higher-level model.  Three predictive ANN models (FANN, RBF, and GRNN) were 

investigated and evaluated for the effects of the different parameters (as it pertains to a 

specific type of ANN) on model performance.  For model performance we used the 

average RMSE for the three submodel outputs to determine the “best” model.  In addition 

to the RMSE criteria, ANN model run time was also considered, when applicable.  As 

mentioned in the training and testing data set-up, we used the 5-fold method for the 

training/testing data split.  Recall from Table 54 that a total of 720 training exemplars and 

180 testing exemplars were used at the submodel for each fold.  Each exemplar consisted 

of five elements (X1, X2, Y1, Y2, Y3), where the first two elements were used as the input 

variables and the last three elements were the output (target) variables.   

For the feed-forward ANN, we trained the network on a single hidden layer 

[Hornik et al., 1989] and used a linear transfer function (purelin in Matlab) at the output 

layer.  The number of nodes in the hidden layer (neurodes) was varied from two to six 
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[Looney, 1997:91-92].  Two different transfer functions: log-sigmoid (logsig in Matlab) 

and the hyperbolic tangent sigmoid (tansig in Matlab) were also allowed to vary.  Since 

the newff function in Matlab produces different predictions every time the routine is run 

without establishing any initial weights and/or biases (due to the different starting point 

in the re-initialization of the weights and biases), the average of 30 feed-forward runs 

were used to determine which structure (for the different combination of transfer function 

and neurodes) had the lowest RMSE.  The data pre-processing performed on the input 

feature data was normalization between 0 and 1 [Looney, 1997:88].  The training 

parameters used were: mean squared error goal = 0.0001 and the number of iterations for 

training = 500 epochs.  Overall, 10 sets of FANN submodels were evaluated.  The 

corresponding figure for the number of neurodes versus RMSE FANN analysis is 

displayed in Figure 64.    
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Figure 64 - ASGM LL FANN (Method 7) 

  For the radial basis function (RBF) neural network the Matlab function newrb 

was used and the parameters that were allowed to vary were: the spread (σ = .5:0.1: 2) 

and the neurodes (MN = 2:10) [Shin and Goel, 2000] for a total of 144 RBF submodels.  

Figure 65 depicts the results on the testing data for the RBF. 
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Figure 65 - ASGM LL RBF (Method 7) 

 
For the general regression neural network (GRNN) the Matlab function newgrnn 

was used with the same spread variation as the RBF; a total of 16 GRNN submodels were 

evaluated.  The form of feature data pre-processing for both RBF and GRNN was 

standardization where each feature column’s mean is transformed to zero with a standard 

deviation of one.  The corresponding figure for the spread versus RMSE GRNN analysis 

is displayed in Figure 66.      
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Figure 66 - ASGM Submodel GRNN (Method 7) 

Table 64 summarizes the best structure and the parameters used for each ANN for the 

submodel analysis of the ASGM.  A 2-2-3 structure for the feed-forward ANN in Table 

64 indicates 2 inputs, 1 hidden layer with 2 nodes and 3 outputs.  A Tansig transfer 

function was used in the hidden layer.  Note that the GRNN and the RBF generated the 
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smallest RMSE, but the run time of the GRNN was significantly shorter than that of the 

RBF, thus GRNN was used as the ANN metamodel for Method 7.   

Table 64 - Method 7 ASGM ANN Attributes 
ANN Parameters Test RMSE 

FANN 
node structure: 2-2-3 
transfer functions: Tansig 
run time in secs: 32.65 

0.0039 

RBF 
σ : 0.9 
MN: 2 
run time: 333.71 

0.0033 

GRNN σ : 2.0 
run time in secs: 4.49 0.0033 

 

Since there are only two inputs involved in the ASGM simulation, it is easy to visualize 

the ANN predictions for the different submodel output targets at different values of the 

simulation inputs.  Figures 67 to 72 depict the contour and surface plots of the GRNN 

generated predictions.  Note that the FAR (X1) and PHML (X2) input values are 

standardized in Figures 67 to 72.  The real utility of these plots is in the realization of the 

limitation on the prediction capability of the model; that is, at certain input values the 

model will generate the same prediction.  For example, on the surface plot where the 

plateaus occur, the prediction values will be the same.  
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Figure 67 - ASGM GRNN Y1 Contour Plot 

 
Figure 68 - ASGM GRNN Y1 Surface Plot 
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Figure 69 - ASGM GRNN Y2 Contour Plot 

 

 
Figure 70 - ASGM GRNN Y2 Surface Plot 
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Figure 71 - ASGM GRNN Y3 Contour Plot 

 
Figure 72 - ASGM GRNN Y3 Surface Plot 

Table 65 depicts a portion of the M7 submodel aggregation input into the higher-level 

model. 
 

Table 65 - ASGM M7 (ANN-GRNN) Input Data 
Scenario Y1 Y2 Y3 

1 0.6668 0.1666 3.2446 
2 0.6668 0.1667 3.2446 

… … … … 
9 0.6670 0.1666 3.2450 
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Next we consider including controls in the input feature of the ANN.  Similar to 

the regression extension method (M6.1), for M7.1 we investigate the effects on the neural 

network prediction when controls are included in the input feature.  The set-up for the 

feed-forward ANN is identical with M7 except that the number of nodes in the hidden 

layer (neurodes) was varied from two to twenty.  Overall, 38 sets of FANN submodels 

were evaluated for M7.1.  The corresponding figure for the number of neurodes versus 

RMSE FANN analysis is displayed in Figure 73.    

 

2 4 6 8 10 12 14 16 18 20

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2
x 10-3

Number of nodes in hidden layer

R
M

S
E

Feedforward NN ASGModel Unsch Mx

 

 

tansig
logsig

 
Figure 73 - ASGM LL FANN with Controls (Method 7.1) 

  For the radial basis function (RBF) neural network the parameters that were 

allowed to vary were: the spread (σ = .5:.1: 2) and the neurodes (MN = 2:20), for a total 

of 304 RBF submodels.  Figure 74 depicts the results on the testing data for the RBF. 
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Figure 74 - ASGM LL RBF with Controls (Method 7.1) 
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In the general regression neural network (GRNN) the Matlab function newgrnn 

was used with the same spread variation as the RBF; a total of 16 GRNN models were 

evaluated at the submodel.  The form of feature data pre-processing for both RBF and 

GRNN was standardization where each feature column’s mean is transformed to zero 

with a standard deviation of one.  The corresponding figure for the spread versus RMSE 

GRNN M7.1 analysis is displayed in Figure 75.      
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Figure 75 - ASGM LL GRNN with Controls (Method 7.1) 

 Table 66 summarizes the best structure and the parameters used for each ANN for 

the submodel analysis of the ASGM using M7.1.  In Table 66, a 19-2-3 structure for the 

feed-forward NN indicates 19 inputs, 1 hidden layer with 2 nodes and 3 outputs.  The 

GRNN generated the smallest RMSE therefore was used as the ANN metamodel for 

Method 7.1.  Table 67 depicts a portion of the M7.1 submodel aggregation input into the 

higher-level model. 

Table 66 - Method 7.1 ASGM ANN with Controls Attributes 
ANN Parameters  Test RMSE 

 
FANN 

node structure: 19-2-3 
transfer functions: Tansig 
run time in secs: 367.4 

0.0044 

 
RBF 

σ : 0.9 
MN: 20 
run time: 1164.1 

0.0031 

GRNN σ : 1.2 
run time in secs: 6.1 0.0021 

 



 154

Table 67 - ASGM M7.1 (ANN-GRNN with Controls) Input Data 
Scenario Y1 Y2 Y3 

1 0.6661 0.1664 3.2465 
2 0.6662 0.1667 3.2449 

… … … … 
9 0.6673 0.1661 3.2430 

 

5.3.4.2 Higher-Level Model 

The Direct Method approach along with the ten alternate methods described were 

implemented as part of the input for ASGM higher-level model.  At the higher-level for 

the ASGM, the outputs of interest are Mission Capable Rate (Z1: MCR), Not-Mission 

Capable for Maintenance (Z2: NMCM), Not-Mission Capable for Supply (Z3: NMCS) 

and Flying Scheduling Effectiveness Rate (Z4: FSER).  After running the submodel and 

feeding the output, using the DM and the different alternate methods, as an input into the 

higher-level model, we need to determine if any of the alternate methods are significantly 

different from the Direct Method approach.  For this comparative analysis we initially 

utilize the paired-t confidence interval approach as described in Law [2006:552-561] to 

form the approximate 100(1-α) percent simultaneous confidence interval (Bonferroni 

inequality) where we set the DM approach as the standard to compare all other methods 

to.  We examined the across-scenario comparison for the output of the higher-level 

model.  The initial analysis is to examine how the various aggregation techniques can 

handle reproducing the simulation model means at the replication level and therefore 

validate the techniques’ ability to perform general prediction of the simulation model.   

For the across-scenario analysis, we examined the replication-by-replication 

results of Scenarios 1-9.  The partial results for the higher-level outputs Z1, Z2, Z3 and Z4 

along with the sample means and variances for each aggregation methods, where j is the 

replication number, are shown in Tables 68 to 71, respectively.   
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Table 68 - ASGM MCR (Z1) for all Scenarios 
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j 
1 0.8731 0.8758 0.8758 0.8758 0.8758 0.8757 0.8758 0.8758 0.8758 0.8758 0.8758 
2 0.8779 0.8789 0.8789 0.8789 0.8789 0.8787 0.8789 0.8789 0.8789 0.8788 0.8789 
... ... ... ... ... ... ... ...  ...   

900 0.7877 0.7937 0.7937 0.7937 0.7937 0.7934 0.7937 0.7937 0.7937 0.7938 0.7937 
Mean 0.8311 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 0.8317 

Variance 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 

 

Table 69 - ASGM NMCM (Z2) for all Scenarios 
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j 
1 0.1215 0.1189 0.1189 0.1189 0.1189 0.1190 0.1189 0.1189 0.1189 0.1189 0.1189 
2 0.1169 0.1159 0.1159 0.1159 0.1159 0.1161 0.1160 0.1160 0.1159 0.1160 0.1159 
... ... ... ... ... ... ... ...  ...   

900 0.2025 0.1968 0.1968 0.1967 0.1967 0.197 0.1967 0.1967 0.1967 0.1967 0.1967 
Mean 0.1613 0.1608 0.1608 0.1607 0.1607 0.1608 0.1608 0.1608 0.1608 0.1607 0.1607 

Variance 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 
 
 

Table 70 - ASGM NMCS (Z3) for all Scenarios 
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j 
1 0.0054 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 
2 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 
... ... ... ... ... ... ... ...  ...   

900 0.0098 0.0095 0.0095 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0095 0.0096 
Mean 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 

Variance 3.400E-06 3.387E-06 3.387E-06 3.392E-06 3.392E-06 3.394E-06 3.389E-06 3.389E-06 3.386E-06 3.374E-06 3.392E-06 

 
 

Table 71 - ASGM FSER (Z4) for all Scenarios 
j DMj M1j M2j M3j M4j M5j M6j M6.1j M7j M7.1j M8j 
1 0.9458 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 
2 0.9444 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 0.9477 
... ... ... ... ... ... ... ...  ...   

900 0.9083 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 0.9097 
Mean 0.9257 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 0.9258 

Variance 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 
 
 

  The initial Bonferroni α-level chosen for the ASGM means comparison analysis 

was that of 0.10 for an overall confidence level of at least 99%, similar to theα-level 

chosen in the FTM means comparison.  However, depending on the higher-level output 

examined, the results seemed contradictory; that is, for Z1 and Z2, none of the aggregation 

methods produced means that were statistically the same at the higher-level model.  On 

the other hand, Z4 indicated that any of the submodel aggregation methods were 

acceptable, while Z3 indicated all but M6 and M6.1 were acceptable methods.  This led to 

a further examination of the α-level chosen for the means comparison analysis as 
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depicted in Table 72.  “All” in Table 72 signifies that all submodel aggregation methods 

produced means that are similar to the Direct Method for the higher-level simulation 

outputs.  Conversely, “None” indicates that none of the submodel aggregation methods 

produced means that are similar to the Direct Method for the higher-level simulation 

outputs. 

 

Table 72 - ASGM Bonferroni α Comparison 
 Individual Confidence Interval 

 99.999% 99.99% 99.9% 99.5% 99% 98% 97.5% 95% 

 Overall Confidence Interval 
(Bonferroni α) 

HL Output 99.99% 
(0.0001) 

99.9% 
(0.001) 

99% 
(0.01) 

95% 
(0.05) 

90% 
(0.1) 

80% 
(0.2) 

75% 
(0.25) 

50% 
(0.5) 

Z1 All All All 
M1, M2, 
M5, M6, 

M6.1, M7 
None None None None 

Z2 All All All M5, M6, 
M6.1 None None None None 

Z3 All All All All All but 
M6, M6.1 M7.1 M7.1 None 

Z4 All All All All All All All All 
 

 

As can be observed from Table 72, as the overall α-level increases (conversely 

the individual confidence interval are decreasing), more and more of the alternate 

aggregation methods are being rejected as an acceptable aggregation method for the 

means.  Table 72 also depicts which higher-level outputs are sensitive to the type of 

aggregation conducted at the submodel which is apparent for Z1 and Z2 at α ≥ 0.10.  It is 

also clear from Table 72 that Z4 is not sensitive to the type of aggregation conducted at 

the submodel.  Based on Table 72, the overall α-level chosen for analysis that follows is 

α = 0.05.  Since there are ten intervals (g = 10) to construct for each method, each 

interval is set to 99.5% (1-α/g) to yield an overall confidence level of at least 95%, where 

α = 0.05.  From this, we can deduce (with a confidence level of at least 1-α) that method 

g differs from the standard Direct Method approach if the interval μg-μDM misses zero, 

and that method g is not significantly different from the DM approach if the confidence 

interval contains zero.  Tables 73 to 76 show the 99.5% individual confidence intervals 
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for μg-μDM, for g = 1,..,10 (the ten different alternate methods) for the different higher-

level model outputs using the paired-t approach to confidence interval formation.  The 

interval(s) with a single asterisk signify those that are not significantly different from the 

DM approach, indicating a good candidate method for aggregation.  In addition, only 

intervals with an asterisk have an accompanying difference in the sample means, 

M DM−g  (e.g., in Table 74, M DM−g is only included for Methods 5, 6, and 6.1) to 

evaluate which alternative aggregation method is more precise; the smallest difference in 

the sample means is indicated with a double asterisk. 

 
Table 73 - ASGM MCR (Z1) 99.5% Confidence Interval 

Comparisons with the Standard  

g Method M DM−g  Half-length Interval 

1 Mean 5.82E-04 5.83E-04 (-1.1E-06, 1.16E-03)* 
2 Normal(Mean,se) 5.82E-04 5.83E-04 (-1.2E-06, 1.16E-03)* 
3 MeanCV n/a n/a (1.46E-05, 1.19E-03) 
4 Normal(MeanCV,seCV) n/a n/a (1.45E-05, 1.19E-03) 
5 Dist Fitting 5.52E-04** 5.61E-04 (-8.8E-06, 1.11E-03)* 
6 Regression 5.79E-04 5.88E-04 (-8.8E-06, 1.17E-03)* 
7 Regression w/ Controls 5.79E-04 5.88E-04 (-8.8E-06, 1.17E-03)* 
8 ANN 5.83E-04 5.84E-04 (-1.6E-06, 1.17E-03)* 
9 ANN w/ Controls n/a n/a (3.12E-05, 1.18E-03) 

10 MetaSim n/a n/a (1.23E-05, 1.18E-03) 
 

Table 74 - ASGM NMCM (Z2) 99.5% Confidence Interval  
Comparisons with the Standard  

g Method M DM−g  Half-length Interval 

1 Mean n/a n/a (-1.10E-03, -5.75E-06) 
2 Normal(Mean,se) n/a n/a (-1.10E-03, -5.67E-06) 
3 MeanCV n/a n/a (-1.14E-03, -2.00E-05) 
4 Normal(MeanCV,seCV) n/a n/a (-1.14E-03, -2.00E-05) 
5 Dist Fitting 5.229E-04** 5.25E-04 (-1.05E-03, 2.28E-06)* 
6 Regression 5.502E-04 5.56E-04 (-1.11E-03, 6.15E-06)* 
7 Regression w/ Controls 5.502E-04 5.56E-04 (-1.11E-03, 6.15E-06)* 
8 ANN n/a n/a (-1.11E-03, -2.60E-06) 
9 ANN w/ Controls n/a n/a (-1.11E-03, -4.19E-05) 

10 MetaSim n/a n/a (-1.13E-03, -1.80E-05) 
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Table 75 - ASGM NMCS (Z3) 99.5% Confidence Interval 
Comparisons with the Standard 

g Method M DM−g  Half-length Interval 

1 Mean 2.706E-05 3.45E-05 (-6.15E-05, 7.41E-06)* 
2 Normal(Mean,se) 2.704E-05 3.45E-05 (-6.15E-05, 7.42E-06)* 
3 MeanCV 2.560E-05 3.26E-05 (-5.82E-05, 6.95E-06)* 
4 Normal(MeanCV,seCV) 2.560E-05 3.26E-05 (-5.82E-05, 6.95E-06)* 
5 Dist Fitting 2.937E-05 3.73E-05 (-6.67E-05, 7.92E-06)* 
6 Regression 2.863E-05 3.26E-05 (-6.13E-05, 4.02E-06)* 
7 Regression w/ Controls 2.863E-05 3.26E-05 (-6.13E-05, 4.02E-06)* 
8 ANN 2.792E-05 3.33E-05 (-6.12E-05, 5.39E-06)* 
9 ANN w/ Controls 3.099E-05 4.34E-05 (-7.44E-05, 1.24E-05)* 

10 MetaSim 2.553E-05** 3.26E-05 (-5.82E-05, 7.10E-06)* 
 
 

Table 76 - ASGM FSER (Z4) 99.5% Confidence Interval 
Comparisons with the Standard 

g Method M DM−g  Half-length Interval 

1 Mean 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
2 Normal(Mean,se) 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
3 MeanCV 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
4 Normal(MeanCV,seCV) 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
5 Dist Fitting 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
6 Regression 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
7 Regression w/ Controls 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
8 ANN 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
9 ANN w/ Controls 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 

10 MetaSim 3.603E-05 2.95E-04 (-2.59E-04, 3.31E-04)* 
 
 
 The outputs in Tables 73 to 76 indicate which method is most appropriate, when 

comparing the means, as an aggregation method employed at the submodel for specific 

higher-level outputs.  Note that the methods without the single asterisk (*) signify that the 

output of the means at the higher-level will be statistically different from the DM if these 

methods are implemented as the input for the higher-level model.  As can be seen from 

the confidence interval means comparison for the different outputs at the higher-level, 

Methods 1, 2, 5, 6, 6.1 and 7 are good candidates as input into the higher level model for 

the MCR (Z1) output, which indicates that these methods implemented at the submodel 

produced statistically similar outputs for the mean in the next higher-level.  For the 

NMCM (Z2) output, Methods 5, 6, and 6.1 are good candidates for the submodel 

aggregation.  Finally, for the NMCS (Z3) and FSER (Z4) outputs, all candidate methods 

are acceptable submodel aggregation replacements.  In order to accommodate all four 
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higher-level outputs, assuming no output prioritization is employed, we see that Methods 

5, 6, and 6.1 are common aggregation methods thus a better acceptable method for means 

comparison for the ASGM.   

 In addition to capturing the means of the simulation for the DM, perhaps 

capturing the distribution of the output at the higher-level for the DM might give us 

another process of portraying the true nature of the simulation model.  To demonstrate 

the graphical comparison method of the different higher-level outputs, we examine the 

graphical comparisons of the DM versus selected alternate aggregation methods for the 

MCR (Z1) output.  Statistically, all but M3, M4, M7.1, and M8 are good candidate 

aggregation methods for means comparison at the submodels.  However, we need to 

further examine the candidate methods in terms of their output distributions at the higher-

level.  The graphical comparison analysis looks at one scenario at a time (Scenario 1) for 

the candidate aggregation method with the lowest mean absolute difference (M5) to that 

with the largest mean absolute difference (M7) in the means comparison for the MCR 

output (see Table 73).  The tool used for this graphical analysis is ExpertFit®.  Figure 76 

depicts the histogram comparison of the selected methods while Figure 77 depicts the 

absolute-error plot of the histogram comparison.  The blue bars in Figure 76 are the 

histogram of the outputs at the higher-level with the Direct Method (no aggregation in the 

submodel outputs).  The red and the green bars depict the histograms of M5 and M7, 

respectively.  It is sometimes difficult to assess the differences or similarities in the 

histograms, thus the histogram in Figure 76 is accompanied by its corresponding 

absolute-error plot as shown in Figure 77.  The differences are typically more apparent 

when utilizing the absolute-error plot to compare histograms.  However, we see in Figure 

77 that the absolute-error between DM versus M5 and M7 are still difficult to visually 

assess which is more similar to the DM in their distributions.  This is a good example of 

when to continue and assess the cdf instead of the histogram.  When both visual 

assessments fail, then the use of statistical methods such as the entropy and/or K-S test 

becomes extremely useful. 
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Figure 76 - ASGM Z1 Histogram Comparison  
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Figure 77 - ASGM Z1 Absolute-Error Histogram  
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 Next we examine the distribution function comparisons which are shown in 

Figures 78 and 79.  Similar to the histogram comparison, direct visual comparison of the 

methods using the cdf could be challenging therefore we look at the distribution-function-

differences plot in Figure 79 to compare the distribution functions in Figure 78.  From 

Figure 79, we can visually assess that M5 is more similar to DM than M7.  The 

ExpertFit® graphical output also depicts the mean difference from the compared method 

(DM), which shows that M5 has a lower mean difference than M7, as compared to the 

DM.  Statistically M5 is slightly better, but practically both M5 and M7 are the same in 

distribution as the DM.  
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Figure 78 - ASGM Z1 CDF Comparison  
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Figure 79 - ASGM Z1 CDF-Differences Plot 

 

 

 Next we look at the K-S test result in Table 77 at α = 0.05.  Recall that for the K-

S test, the null hypothesis (H0) is that the compared data are drawn from the same 

distributions.  The p-value indicates the α-level at which the null hypothesis will not be 

rejected.  The K-S statistic signifies the maximum distance between the compared 

distribution functions.  Based on Table 77, we can conclude that both M5 and M7 

implemented at the submodel output generate outputs at the higher-level model that 

comes from the same distribution as the DM. 

 

Table 77 - FTM Z1 K-S Test 
DM vs. Fail to Reject/Reject H0? p-value K-S stat 
M5 Fail to Reject 0.19304 0.1500 

M7 Fail to Reject 0.19304 0.1500 
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5.4 Routing Model (RM) 

The necessity of the Routing Model (RM) came about as a consequence of the results in 

the ASGM analysis when comparing the different aggregation methods, specifically for 

the M6 and M6.1 regression methods.  The ASGM showed no significant factors 

(simulation inputs) across all the different folds in predicting the different submodel 

simulation outputs during the regression analysis (see Tables 58 to 61).  We needed to 

create a simple model that had clear significant inputs in relation to the output of interest.  

The focus in the Routing Model is more on the direct effect of specific aggregation 

methodologies at one level, rather than evaluating the aggregation effects in the next 

higher-level.  This means that not all alternate aggregation methodologies will be 

discussed nor analyzed for the Routing Model.  This narrower focus is mainly due to time 

constraints, but the investigation of the different expansion to the regression method was 

deemed significant enough to warrant further investigation. 

5.4.1 Routing Model Assumptions 

The assumption at this point is that the full model has already been decomposed.  The 

decomposed portion which is being aggregated is the submodel representation. 

5.4.2 Routing Model Description 

The Routing Model was built using Rockwell Software’s ARENA™ Version 10.0 entity-

based simulation software.  The simulation represents the aircraft routing portion of some 

larger full model as depicted in Figure 80. 
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Figure 80 - Routing Model Diagram 

 The following are the details involved in the construction of the Routing Model in 

Arena: 

 Approximately 1000 aircraft (AC; entities) arrive to the system for a period of 
5 years (250 days/year), 1 AC per arrival, Exponential(1.5) days time between 
arrival 

 Upon entry, ACs are assigned entry time and Uniform(0,1) attributes 

 Of these 1000 ACs, approximately 850 actually flow through the system 

 500 replications per scenario  

 High-Low (1-2) scenario set up (simulation model input X1) 

• High – scenario 1: with an 80% probability of going through the H-routes  
• Low – scenario 2: with a 20% probability of going through the H-routes  

 Delay for each route in hours (these are the random controls) 

• Route H1 - Normal(25,3.5) 
• Route H2 - Uniform(15,30)  
• Route H3 - Triangular(4,7.5,21)          
• Route L1 - Normal(2,0.2) 
• Route L2 - Uniform(0.75,1.5)             

 One measure of performance: Time in Route (simulation model output Y1) 
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5.4.3 Routing Model Training/Testing Data set-up 

The k-fold cross-validation, with k = 5, was used [Devijver and Kittler, 1982:10] in the 

evaluation of the RM for the regression and the ANN techniques.  This method partitions 

the data into two groups, k-times, and is used to train the predictor and the other 

remaining set is used to test the predictor.  We employed the general rule of ~80/20 data 

partitioning for training and testing data for each fold, i.e., the input parameter settings 

used from the computer simulation to train the ANN and the Regression are the first 400 

replications per scenario and are depicted in Table 78.  The last 100 replications within a 

scenario were used to examine the ability of the approximating functions to generalize to 

previously unseen combination samples.  All the 2 different scenarios were replicated 

500 times, for a total of 1000 sample data points (or exemplars).  Thus, for the submodel 

output, 800 data points were used to train the neural network and 200 data points were 

used for testing.  This procedure was repeated 5-times with different training/testing sets 

and the average from all the folds is what the reported values are based on.   

 

Table 78 - RM 5-fold Training/Testing Data Set-up 

Fold  Scenario # Training Data: 
Replication # 

Testing Data: 
Replication # 

1 1 1-400 401-500 
2 1-400 401-500 

Fold 1 Total 800 200 
… … … … 

5 1 101-500 1-100 
2 101-500 1-100 

Fold 5 Total 800 200 
All Folds Total 4000 exemplars 1000 exemplars 

5.4.4 Routing Model Output Comparison 

The output comparison is only accomplished at one level for the Routing Model.  Thus, 

all the previously discussed higher-level comparisons along with the submodel 

comparisons will also be performed.  The main focus for the RM analysis will be on the 

ANN and regression techniques along with the expansions proposed to these two 

methods.  Based on the performance in accuracy and speed on the two previous 
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application models, only the GRNN will be used for the ANN model.  In addition to 

examining the inclusion of random controls in the input matrix, the type of control was 

also deemed necessary in our investigation.  In order to avoid confusion on the pre-

established naming and numbering convention from the two previous models, the 

aggregation methods performed for the RM will be designated as “T” for techniques.  

The techniques that are examined for the Routing Model are: 

(1) GRNN (T1) – Generalized Regression Neural Network with design variable 
only  

(2) GRNN Bauer Wilson Controls (BWC) (T2) – GRNN with design variable 
plus Bauer and Wilson [1993] standardized random controls  

(3) GRNN ConR (T3) – GRNN with design variable plus (Controls - userMean) 
centered random controls  

(4) GRNN ConT (T4) – GRNN with design variable plus random controls with 
no pre-processing  

(5) Regression (T5) – Regression with design variable only  

(6) Regression BWC (T6) – Regression with design variable plus Bauer and 
Wilson [1993] pre- standardized random controls 

(7) Regression ConR (T7) – Regression with design variable plus (Controls - 
userMean) centered random controls  

(8) Regression ConT (T8) – Regression with design variable plus random controls 
with no pre-processing  

 

Table 79 depicts the mean and standard deviation of the different random controls 

collected for the Routing Model. 
 
 

Table 79 - RM Random Controls 
Random 
Controls Statistics BWC ConR ConT 

H1 

Mean 

0.0095 0.0018 25.0018 
H2 -0.0258 -0.0045 22.4955 
H3 -0.0056 -0.0006 10.8328 
L1 0.0196 0.0002 2.0002 
L2 -0.0163 0.0000 1.1250 
H1 

Standard deviation 

1.0127 0.2165 0.2165 
H2 0.9465 0.2510 0.2510 
H3 0.9987 0.2220 0.2220 
L1 1.0189 0.0126 0.0126 
L2 0.9811 0.0129 0.0129 
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Next we perform the step-wise regression on the different controls to determine which 

variables are significant in predicting the output.  The significant factors for the 

regression with different types of controls are listed in Tables 80 to 82. 
 

Table 80 - RM Regression BWC (T6) Significant Factors for Y1 
Fold Output X1 C1 C2 C3 C4 C5 

1 

Y1 

1 1 1 1 0 0 
2 1 1 1 1 0 0 
3 1 0 1 1 0 0 
4 1 0 1 1 0 0 
5 1 0 1 1 0 0 

 
 

Table 81 - RM Regression ConR (T7) Significant Factors for Y1 
Fold Output X1 C1 C2 C3 C4 C5 

1 

Y1 

1 0 1 1 0 0 
2 1 1 1 1 0 0 
3 1 0 1 1 0 0 
4 1 0 1 1 0 0 
5 1 0 1 1 0 0 

 
 

Table 82 - RM Regression ConT (T8) Significant Factors for Y1 
Fold Output X1 C1 C2 C3 C4 C5 

1 

Y1 

1 0 1 1 0 0 
2 1 1 1 1 0 0 
3 1 0 1 1 0 0 
4 1 0 1 1 0 0 
5 1 0 1 1 0 0 

 

Table 83 lists the results of the neural network and regression techniques in terms of the 

RMSE, MAE and MAPD of the different predictions as compared to the standard.  

Observe that errors are fairly consistent across the different techniques except for the 

regression on the unprocessed controls (Regression ConT).  The large error signifies that 

the regression model is unable to correctly predict using its given combination of design 

variables and controls. 
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Table 83 - RM Prediction Errors 
Output Technique RMSE MAE MAPD 

Time in Route  

GRNN 0.7632 0.6049 0.0279 
GRNN BWC 0.9054 0.6478 0.0307 
GRNN ConR 0.7814 0.6247 0.0294 
GRNN ConT 0.7814 0.6247 0.0294 
Regression 0.7631 0.6049 0.0279 
Regression BWC 0.7523 0.5950 0.0277 
Regression ConR 0.7554 0.5991 0.0278 
Regression ConT 5.5825 5.5208 0.2553 

Legend: 
   GRNN: Artificial Neural Network on design variable only 
    Regression: Multiple Regression on design variable only 
    BWC: Bauer and Wilson 1993 random controls pre-processing plus design variable; where BWC pre-processing is 

  (sqrt(count)/stdev)*(Controls-userMean) 
    ConR: (Controls-userMean) pre-processing plus design variable 
    ConT: no pre-preprocessing on random controls plus design variable 
 

To test whether the difference in the error predictions are significant, we utilize the 

paired-t confidence interval approach [Law, 2006:552:561] to form the approximate 

100(1-α) percent simultaneous confidence interval (Bonferroni inequality) where we set 

the DM approach as the standard to compare all other techniques to.  We examined the 

across-scenario comparison for the output of RM simulation.  This initial analysis 

examines how the various aggregation techniques can handle reproducing the simulation 

model means at the replication level and therefore validate the techniques’ ability to 

perform general prediction of the simulation model.   

For the across-scenario analysis, we examined the replication-by-replication 

results of Scenarios 1 and 2.  The partial TiR (Y1) result is shown in Table 84 along with 

the sample means and variances for each technique, where j is the replication number.   

Table 84 - RM TiR (Y1) for all Scenarios 
j DMj T1j T2j T3j T4j T5j T6j T7j T8j 
1 47.2059 47.2497 46.9225 46.9944 46.9944 47.2497 47.1577 47.1915 52.7120 
2 46.3006 47.2497 47.1429 47.1975 47.1975 47.2497 47.2509 47.2607 52.7812 
... ... ... ... ... ... ... ...  ... 

199 14.4468 14.1498 14.0805 14.1302 14.1302 14.1498 14.1772 14.1926 19.7131 
200 13.8180 14.1498 14.0550 14.0643 14.0643 14.1498 14.1941 14.1895 19.7099 

Mean 30.6998 30.6998 30.7075 30.6989 30.6989 30.6998 30.6984 30.7000 36.2205 
Variance 275.379 275.278 272.823 274.043 274.043 275.278 275.364 275.335 275.335 

  

 

 Since there are eight intervals (g = 8) to construct, each interval were set at 

98.75% (1-α/g) to yield an overall confidence level of at least 90%, where α = 0.1.  From 

this, we can deduce (with a confidence level of at least 1-α) that technique g differs from 
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the standard Direct Method approach if the interval μg-μDM misses zero, and that method 

g is not significantly different from the DM approach if the confidence interval contains 

zero.  Table 85 shows the 98.75% confidence intervals for μg-μDM, for g = 1,..,8 (the eight 

different alternate techniques) for the different outputs using the paired-t approach to 

confidence interval formation.  The interval(s) with a single asterisk signify those that are 

not significantly different from the DM approach, indicating a good candidate technique 

for aggregation.  In addition, only intervals with an asterisk have an accompanying 

difference in the sample means, T DM−g  (e.g., in Table 85, T DM−g is included for 

all techniques except for T8) to evaluate which alternative aggregation technique is more 

precise; the smallest difference in the sample means is indicated with a double asterisk. 

 

  
Table 85 - RM TiR (Y1) 98.75% Confidence Interval  

Comparisons with the Standard 

g Technique T DM−g  Half-length Interval 

1 GRNN 1.14E-13 0.0566 (-0.0566, 0.0566)* 
2 GRNN BWC 0.0077 0.0697 (-0.0620, 0.0775)* 
3 GRNN ConR 0.0009 0.0604 (-0.0613, 0.0595)* 
4 GRNN ConT 0.0009 0.0604 (-0.0613, 0.0595)* 
5 Regression 3.55E-15** 0.0566 (-0.0566, 0.0566)* 
6 Regression BWC 0.0013 0.0573 (-0.0586, 0.0559)* 
7 Regression ConR 0.0003 0.0576 (-0.0573, 0.0578)* 
8 Regression ConT n/a n/a (5.4632, 5.5783) 

 

 The outputs in Table 85 indicate which technique is most appropriate, when 

comparing the means.  Note that the methods without the single asterisk (*) signify that 

the means of the simulation output are statistically different from the DM.  As far as 

practical significance, this is something that the analyst and the customers/users need to 

consider aside from the statistical significance of the analysis results.  That is, does is 

really matter that the absolute mean difference from T1 is 1.14E-13 hours versus 0.0013 

hours from T6? 

 Perhaps the next logical analysis aside from means comparison is to check 

whether the distributions of the different techniques differ from or are similar to the DM.  
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Comparing the distributions should provide another process of portraying the true nature 

of the simulation model.  To demonstrate the graphical comparison method of the 

different outputs, we examine the cdf graphical comparisons of the DM versus selected 

alternate aggregation techniques.  The different cdf comparisons that will be conducted 

are 1) DM versus T1-T4, 2) DM versus T5-T8, and 3) DM versus T1 and T5, where the 

graphical comparisons are based on scenario 2; the behavior of the different techniques in 

scenario 1, located in Appendix D, is very similar to that of what is presented next. 

 The cdf and distribution-function-differences plots for the DM versus T1 to T4 

(GRNN group) are depicted in Figures 81 and 82, respectively.  From Figure 81 we 

observe that GRNN (T1) visibly doesn’t fit the distribution of DM as well as T2 to T4.  

T3 and T4 are basically the same line plot so the T3 line is not displayed in Figures 81 

and 82.  Figure 82 displays the mean difference of the compared techniques to the DM.  

It can be observed in this plot that GRNN BWC (T2) has the smallest mean difference 

from DM while T1 has the largest mean difference from DM.   
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Figure 81 - RM Y1 CDF Comparison (1) 
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Figure 82 - RM Y1 CDF-Differences Plot (1) 

 
Next we look at the K-S test result of comparison (1) in Table 86 at α = 0.10.  According 

to the K-S test we can conclude that T1 to T4 prediction outputs do not come from the 

same distribution as the DM. 

 

Table 86 - RM Y1 K-S Test (1) 

DM vs. Fail to Reject/Reject H0? p-value K-S stat 

T1 Reject 4.3E-13 0.5300 

T2 Reject 1.2E-05 0.3400 

T3 Reject 2.4E-05 0.3300 

T4 Reject 2.4E-05 0.3300 

 

 

The cdf and distribution-function-differences plots for the DM versus T5 to T8 

(regression group) are depicted in Figures 83 and 84, respectively.  From Figure 83 we 

observe that GRNN ConT (T8) clearly doesn’t fit the distribution of DM as well as T5 to 
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T7.  The behavior of T5 differing from T6 and T7 is cloaked by the gross difference of 

T8 from the other three techniques.  Figure 84 displays the mean difference of the 

compared techniques to the DM.  It can be observed in this plot that Regression ConR 

(T7) has the smallest mean difference from DM while T8 has the largest mean difference 

from DM.  Similar to the results in the neural network comparison, the addition of 

controls also improves the prediction capability of the regression model. 
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Figure 83 - RM Y1 CDF Comparison (2) 
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Figure 84 - RM Y1 CDF-Differences Plot (2) 

 

Next we look at the K-S test result of comparison (2) in Table 87 at α = 0.10.  According 

to the K-S test we can conclude that T5 to T8 prediction outputs do not come from the 

same distribution as the DM. 

 

Table 87 - RM Y1 K-S Test (2) 

DM vs. Fail to Reject/Reject H0? p-value K-S stat 

T5 Reject 4.3E-13 0.5300 

T6 Reject 5.2E-08 0.4100 

T7 Reject 6.0E-06 0.3500 

T8 Reject 1.6E-45 1.0000 

 

 

It is clear from Table 85 that GRNN (T1) and regression (T5) are very similar in the 

means in the prediction of the true simulation output, but for completeness we examine 
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the distribution plots of these two techniques as depicted in Figure 86.  Figures 86 and 87 

show that T1 and T5 are identical in distribution, but not necessarily similar with DM.  

The dissimilarity in the distributions seems vast by merely looking at the cdf plots; 

however, observe in Figure 87 that the mean difference is still quite small. 
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Figure 85 - RM Y1 CDF Comparison (3) 
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Figure 86 - RM Y1 CDF-Differences Plot (3) 

Next we look at the K-S test result of comparison (3) in Table 88 at α = 0.10.  According 

to the K-S test we can conclude that T1 and T5 prediction outputs do not come from the 

same distribution as the DM, which was already previously observed in Tables 86 and 87, 

respectively. 

 

Table 88 - RM Y1 K-S Test (3) 

DM vs. Fail to Reject/Reject H0? p-value K-S stat 

T1 Reject 4.3E-13 0.5300 

T5 Reject 5.2E-08 0.4100 

5.5 Summary 
 
For the ALS Sortie Generation Model, a structural aggregation at the submodel (i.e., 

unscheduled maintenance node) was performed.  Similar to the FTM analysis, the ASGM 

analysis showed that depending on which higher-level model output is deemed more 
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important, dictated the type of aggregation that is best implemented at the submodel.  

Without any sort of prioritization on the importance of the higher-level output, it was 

determined that in general, Methods 5, 6 and 6.1 are representative aggregation methods 

at the submodel for all four outputs of interest.  The MCR (Z1) output was also 

investigated in more detail by means of graphical comparison methods to compare the 

outputs of the Direct Method to that of the applicable aggregation methods with the 

smallest mean absolute difference (M5) and the largest mean absolute difference (M7).  

For this additional analysis, we see that the initial confidence interval method comparison 

agrees with the graphical and K-S test analysis.  Based on the three comparison tests 

performed for the higher-level MCR output, M5 and M7 are good alternate methods for 

the DM at the submodel when seeking similar means and distribution in the higher-level 

output.  This result is highly desirable since the selected submodel aggregation methods 

not only resembles the means, but also mimics the distribution of the Direct Method 

outputs at the higher-level. 

 Also in this chapter we investigated in more detail the regression and neural 

network model expansion where we proposed not only using the typical design variables 

for predictors/features but also including the random controls collected from the 

simulation model for improved model prediction.  The Routing Model experiment 

showed that the inclusion of controls in the prediction models generated predictions that 

are not only representative of the means of the simulation, but are also better 

representation of the simulation output’s true distribution. 

 The analyst needs to consider that although a specific aggregation method(s) for a 

simulation is not statistically different from the standard Direct Method and results in a 

better MAE, one has to consider the strengths and weaknesses of each method and the 

ability of each analyst in employing the suggested methods.  Also, in the absence of 

previously simulated data, Methods 1-5 will be impossible to employ, unlike Methods 6 

(Regression), 7 (ANN) and 8 (MetaSim) which can still generate approximations for the 

submodels given the new inputs are in the range of which these methods were trained 

upon. 
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VI. Contributions and Future Research 

6.1 Overview 

This chapter provides a summary of the contributions made to the field of modeling and 

simulation through the research conducted and presented in this document.  A list of 

potential areas for further investigation related to this research is also provided. 

6.2 Research Contributions 

This section discusses the contributions established during this dissertation research.  

More often than not, simulation models are too complex and take a long time to run; a 

tool that can be used for dealing with the complexity and run time issues is through the 

use of metamodeling through aggregation.  Additional reasons why there is a need for 

aggregation in model development are lack of data, inadequate understanding of the 

system, or inaccessibility to the actual simulation model.  Aggregation simplifies a more 

complex system in some specific way which enables the users to get a better grasp on the 

system at hand.  However, model aggregation tends to always produce information loss 

on the original variables.  In addition, the aggregate model will be but an imperfect 

version of the original non-aggregated system.  Although the abstracted model is usually 

only able to estimate near correct predictions, it is nevertheless valuable by virtue of its 

simplicity and execution speed.  This loss of information manifested through the model 

outputs is the main reason why we need to evaluate different aggregation techniques that 

are more suitable for specific simulation models.   

The typical and most common aggregation method in hierarchical simulation 

modeling is through the use of averaging (i.e., taking the means) and using these as inputs 

into a more complicated set of models.  We recommend that the analyst should 

investigate beyond just the means method and examine the effects of other statistical 

aggregation techniques.  By expanding the means method to incorporating a normal 

distribution assumption, using variance reduction techniques, regression, neural networks 

and MetaSim the analyst can take advantage of the strengths of these alternative 
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techniques and assess which of these methods best represents their specific simulation 

models.  From a practical standpoint, the most important contribution in this research is 

meeting the needs of the practicing analyst with the proper essential knowledge.  Next, 

we discuss the specific contributions generated with the research conducted and 

presented in this document. 

6.2.1 Aggregation Process Development  

In this research, we developed a well-defined 3-step aggregation procedure for 

hierarchical simulation depicted in Figure 87.  The aggregation methodology developed 

in this research provides an analytic foundation that formally defines the necessary steps 

essential in appropriately and effectively simulating large hierarchical systems.  Figure 87 

outlines a 3-step process with the additional assumption that a set of hierarchical 

simulation models are already in existence before executing the aggregation procedure.  

Step 1 consists of identifying candidate submodels (entities, events, and/or processes) for 

aggregation.  In order to perform aggregation of large hierarchical simulation models, the 

question of “what” and “how” needs to be addressed.  To facilitate the “what” portion of 

the aggregation process the hierarchical simulation model is characterized in a 

mathematical format to aid in determining what portion of the entire simulation model 

can be aggregated.  The “how” part of the aggregation process are addressed in Section 

3.6 by means of different statistical techniques such as regression, ANN, etc.  The third 

and final step in the process consists of comparing the simulation outputs of the Direct 

Method and the different statistical techniques at the higher-level model in terms their 

means and underlying distributions. 
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Figure 87 - Overall Model Aggregation Procedure 

 

6.2.2 Mathematical Framework Development  

We not only defined a formal aggregation process, but also objectively identified what 

part of a hierarchical simulation can be aggregated.  A mathematical framework was 

implemented to examine individual simulations in order to identify what part of the entire 

system could be aggregated using a decomposition technique.  This decomposition 

process of large hierarchical simulations is founded upon an extension of previously 

existing graph theoretic and network analysis methods.  We have also validated previous 

decomposition work by Bauer et al. [1985, 1991] and Matthes [1998] and showed other 

rotation schemes can be applied as well.  The decomposition process was demonstrated 

for within-a-level (logical decomposition) and within-a-model (structural decomposition) 

in Chapters 4 and 5, respectively.   
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6.2.3 Suite of Aggregation Techniques   

For this research, we designed and implemented a suite of standard and novel statistical 

techniques for simulation aggregation capturing differences in maintaining data fidelity.   

Table 89 - Aggregation Methodology Summary 
Method Short Name Brief Description Comments 

Mean ( ilY ) 
Method 1  

(M1) 
- simplest method 
- average across all observations and 
replications; grand mean 

- use all available data for 
prediction 
-prediction based on per scenario 

Normal , sY il
J

⎛ ⎞
⎜ ⎟
⎝ ⎠

 Method 2  
(M2) 

- given sample size is large, J ≥ 30, 
assumes data are normally distributed 
with mean parameter derived from M1 
and standard error (se) of the mean 

- use all available data for 
prediction 
-prediction based on per scenario 

MeanCV � �( )( )iYμ β  Method 3  
(M3) 

- uses mean derived from the control 
variate (CV) technique 
- uses the Bauer and Wilson [1993] 
standardized controls 

- use all available data for 
prediction  
-prediction based on per scenario 

l l( ) CV 11 Normal  ( , )
i iY Y sεμ β μ σ∼  Method 4  

(M4) 

- given sample size is large, J ≥ 30, 
assumes data are normally distributed 
with mean parameter derived from M3 
and se 

- use all available data for 
prediction  
-prediction based on per scenario 
- goal is for se to be smaller than se 
from M2 

Distribution Fitting Method 5  
(M5) 

- uses all the data (down to the 
observation level) of each lower-level 
output and fits a distribution using 
Arena®’s Input Analyzer  

- use all available data for 
prediction 
-prediction based on per scenario 

Regression Method 6  
(M6) 

- uses the ordinary least squares 
approach 
- uses one regression equation per 
simulation output 
- uses step-wise regression for design 
variable (inputs) selection 

- partition data into training and 
test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, esp. 
useful when new sim runs do not 
exist 

Regression with Controls* Method 6.1  
(M6.1) 

- a novel expansion of M6 where the 
random controls are included as 
predictors  

- partition data into training and 
test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, esp. 
useful when new sim runs do not 
exist 

Artificial Neural Network (ANN) Method 7  
(M7) 

- uses FANN, RBF, and GRNN 
- uses one ANN model for all 
simulation outputs 

- partition data into training and 
test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, esp. 
useful when new sim runs do not 
exist 

ANN with Controls* Method 7.1 
(M7.1) 

- a novel expansion of M7 where the 
random controls are included as 
features  

- partition data into training and 
test sets 
- predictions based on test set 
across all scenarios 
- works with new design vars, esp. 
useful when new sim runs do not 
exist 

MetaSim* Method 8  
(M8) 

- a novel technique where the random 
variates in the control variate (CV) 
technique (used in M3 and M4) are 
replaced with an estimate using the 
Normal distribution 
 

- if prediction is based on each 
lower-level scenario, input matrix 
only contains the control vars 
- if prediction is based on all the 
scenarios, include the design vars 
with the control vars in the input 
matrix 
- works with new design vars, esp. 
useful when new sim runs do not 
exist 

 *New or expansion to an existing methodology 
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Several of the aggregation methodologies listed in Table 89 have been successfully used 

in the field; however, what we have assembled for this research are a set of logical steps 

necessary to carry out a successful aggregation study using the techniques listed in Table 

89.  We have categorized these different techniques depending on the accessibility of 

simulation data and highlighted strengths and weaknesses associated with each.  The 

procedure for developing the training and testing data properly for use with specific 

techniques was developed and discussed extensively.  Key points include when to divide 

the simulation data across replications or across scenarios to ensure proper data set-up 

essential in appropriately and successfully implementing these statistical aggregation 

techniques.  

6.2.4 Prediction Accuracy Improvements 

Improved prediction accuracy in the underlying distribution of the simulation output for 

the regression and neural network aggregation techniques through the inclusion of 

random controls in the prediction models.  To the best of our knowledge, this expansion 

to the regression and neural network techniques for prediction is a novel idea. 

6.2.5 MetaSim Aggregation Technique Development 

MetaSim is a novel technique where the random variates in the control variate (CV) 

technique (used in Methods 3 and 4) are replaced with an estimate using the Normal 

distribution.  It is a regression model based on external design variables and internal 

structural variables (controls).  The idea is to replace the entire simulation model, at least 

the portion that is being aggregated, with a prediction model (MetaSim).  This technique 

is discussed in detail in Section 3.6.8. 

6.2.6 Demonstration of Techniques  

Practical contributions comprise the demonstration of the overall methodology and each 

of the aggregation techniques in the application chapters in a clear and concise manner.  

In addition, the associated suite of algorithms developed within the Matlab environment 

is provided to aid other analysts in using this procedure. 
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6.3 Recommendations for Future Research 

Within this research, there are a number of avenues for research opportunities that remain 

to be explored.  We present these areas that are believed to improve the performance of 

the overall aggregation process.   

6.3.1 Fusion  

The fusion of individual neural network predictions needs to be explored for potential 

increased prediction accuracy with neural network ensembles (e.g., combining 

predictions of the FANN, RBF, and GRNN).  In our application of the neural network 

technique, we used the neural network with the lowest RMSE as the “best” model 

representation for this specific method.  However, fusing the outputs of these three 

techniques could potentially produce an RMSE that is lower than the “best” individual 

model. 

6.3.2 Incremental Aggregation  

In the two application models for this research, we only aggregated one “decomposed 

portion” and assessed its impact on the higher-level model.  Incremental aggregation of 

the decomposed models for more than one node needs to be further explored to evaluate 

its effects on the prediction accuracy as more and more nodes of the decomposed models 

are aggregated.  As discussed in Van Lienden [1998], as more and more nodes are 

aggregated the prediction accuracy of the metamodeling technique increases.  The point 

of when to stop aggregating also needs to be assessed. 

6.3.3 Multivariate Considerations 

Multivariate consideration in the construction of statistical distribution modeling 

aggregation of multiple outputs needs to be addressed.  We assumed in our 

implementation that each lower-level (or submodel) simulation output was independent, 

which may not always be true in real-world situations.  It might be better (and more 

complex) from an information theoretic standpoint to capture the data jointly. 
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6.3.4 Principal Component Regression (PCR) 

When presented with a simulation model with several input parameters, principal 

component regression on the input parameters of the regression and neural network 

models needs to be considered.  As with principal component analysis as a data pre-

processing tool, the analyst needs to evaluate the necessity of incorporating PCR before 

performing the regression and/or neural network techniques.  If the predictions are 

improved with PCR incorporated in the metamodeling technique, then this should be 

included as part of the process. 

6.3.5 Combat Model Application  

Last but not least, implement the entire methodology to existing Air Force models.  The 

original goal for application of the developed methodology was on real Air Force models, 

but due to time and the inaccessibility of these models to outside users, this goal was not 

realized.  Instead, the application of the developed model aggregation methodology was 

applied to real-world military simulation models in the area of flying training and the 

current Air Force aircraft sortie generation process. 

6.4 Conclusion 

This research presented a logical and effective solution methodology for evaluating and 

conducting aggregation of large hierarchical simulation models with applications to real 

world models to clearly demonstrate the approach and its benefits to the overall 

simulation goals.  Often aggregation is viewed and implemented through a logical 

grouping of entities within a simulation (perhaps based on physical considerations of the 

systems being modeled).  Our approach takes a broader and more objective (using a 

mathematical framework) view of the entire logical structure of a simulation and specific 

processes modeled in formalizing procedures to more appropriately and accurately 

capture information for aggregation.  This approach better defines the issues and 

challenges involved with the exchange of information between simulation models at 

different hierarchical levels.  Our novel use of sophisticated metamodeling techniques in 
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conjunction with our well defined structural and logical aggregation (or decomposition) 

lays the foundation for eventually replacing very large aggregated models with a series of 

interconnected metamodels, capable of providing decision makers with accurate system 

performance results in a fraction of the time used with original simulation. 
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Appendix A:  (s, S) Inventory Toy Model Data and Code 
 

Table A1 - Kilmer Input/Output Data [Kilmer, 1994, Table B2 and B3 combined] 
s d k w C  Var( C ) 

40 80 48 10.5 144.08 0.41 
20 80 80 4 161.12 6.49 
80 80 16 4 176.02 0.4 
60 80 16 17 155.16 0.37 
40 60 48 10.5 136.44 0.71 
20 60 80 4 172.44 9.88 
80 60 16 4 166.4 0.24 
60 60 16 17 145.63 0.11 
40 40 48 10.5 133.92 0.83 
20 40 80 4 179.56 16.53 
80 40 16 4 156.8 0.19 
60 40 16 17 137.3 0.39 
40 20 48 10.5 139.95 0.58 
20 20 80 4 217.05 11.28 
80 20 16 4 153.05 0.42 
60 20 16 17 132.21 0.33 
20 80 48 10.5 131.21 0.76 
80 80 80 10 192.66 0.6 
60 80 16 4 154.45 0.42 
40 80 16 17 136.11 0.63 
20 60 48 10.5 126.76 2.18 
80 60 80 10 188.22 0.51 
60 60 16 4 147.46 0.46 
40 60 16 17 125.53 0.46 
20 40 48 10.5 127.5 0.6 
80 40 80 10 185.55 0.76 
60 40 16 4 136.83 0.55 
40 40 16 17 116.01 0.33 
20 20 48 10.5 137.42 2.34 
80 20 80 10 202.7 1.15 
60 20 16 4 133.11 0.42 
40 20 16 17 113.36 0.46 
80 80 48 17 183.85 0.3 
60 80 80 10 173.13 0.74 
40 80 16 4 134.56 0.34 
20 80 16 17 118.08 0.21 
80 60 48 17 176.49 0.47 
60 60 80 10 168.47 1.15 
40 60 16 4 126.8 0.38 
20 60 16 17 109.16 0.29 
80 40 48 17 173.1 0.24 
60 40 80 10 166.21 1.42 
40 40 16 4 117.71 0.59 
20 40 16 17 101.57 0.6 
80 20 48 17 176.64 0.58 
60 20 80 10 182.84 1.12 
40 20 16 4 113.93 0.64 
20 20 16 17 98.33 0.82 
60 80 48 17 163.39 0.59 
40 80 80 10 152.67 0.77 
20 80 16 4 121.53 0.77 
80 80 48 4 184.56 1.13 
60 60 48 17 155.38 0.43 
40 60 80 10 147.95 0.87 
20 60 16 4 114.45 0.82 
80 60 48 4 177.84 0.61 
60 40 48 17 151.72 0.22 
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40 40 80 10 147.71 0.51 
20 40 16 4 109.74 0.85 
80 40 48 4 172.53 0.21 
60 20 48 17 155.53 1.2 
40 20 80 10 164.42 1.9 
20 20 16 4 109.11 0.53 
80 20 48 4 177.01 1.09 
40 80 48 17 143.02 0.49 
20 80 80 10 144.85 1.09 
80 80 16 10.5 175.65 0.12 
60 80 48 4 162.82 0.92 
40 60 48 17 138.02 0.5 
20 60 80 10 142 0.6 
80 60 16 10.5 165.68 0.38 
60 60 48 4 158.23 0.44 
40 40 48 17 133.02 1.07 
20 40 80 10 148.23 1.25 
80 40 16 10.5 157.32 0.37 
60 40 48 4 152.67 0.74 
40 20 48 17 137.39 0.63 
20 20 80 10 171.12 2.78 
80 20 16 10.5 152.07 0.36 
60 20 48 4 157.41 0.62 
20 80 48 17 129.17 0.34 
80 80 80 17 192.38 0.66 
60 80 16 10.5 155.44 0.23 
40 80 48 4 145.87 0.86 
20 60 48 17 123.34 0.77 
80 60 80 17 188.43 0.45 
60 60 16 10.5 145.88 0.32 
40 60 48 4 138 0.87 
20 40 48 17 120.96 1.18 
80 40 80 17 187.53 1.28 
60 40 16 10.5 136.74 0.44 
40 40 48 4 136.7 0.57 
20 20 48 17 130.56 1.51 
80 20 80 17 200.96 2.68 
60 20 16 10.51 131.56 0.52 
40 20 48 4 140.05 1.09 
80 80 80 4 192.63 0.62 
60 80 80 17 172.85 0.83 
40 80 16 10.5 134.57 0.42 
20 80 48 4 140.69 2.13 
80 60 80 4 187.24 0.59 
60 60 80 17 168.32 0.56 
40 60 16 10.5 126.04 0.38 
20 60 48 4 144.18 4.82 
80 40 80 4 187.47 0.63 
60 40 80 17 166.24 1.51 
40 40 16 10.5 118.93 0.34 
20 40 48 4 146.06 5.82 
80 20 80 4 202.05 2.94 
60 20 80 17 181.98 1.15 
40 20 16 10.5 114.34 0.34 
20 20 48 4 161.18 2.38 
60 80 80 4 172.22 0.75 
40 80 80 17 154.21 0.21 
20 80 16 10.5 118.02 0.36 
80 80 48 10.5 183.8 0.3 
60 60 80 4 167.13 0.73 
40 60 80 17 148.96 1.16 
20 60 16 10.5 109.12 0.64 
80 60 48 10.5 177.27 0.58 
60 40 80 4 168.6 0.98 
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40 40 80 17 147.47 0.43 
20 40 16 10.5 102.35 0.37 
80 40 48 10.5 172.7 0.39 
60 20 80 4 181.7 1.01 
40 20 80 17 162.34 1.04 
20 20 16 10.5 101.64 0.68 
80 20 48 10.5 177.85 0.65 
40 80 80 4 155.61 1 
20 80 80 17 140.28 0.95 
80 80 16 17 175.9 0.74 
60 80 48 10.5 163.7 0.39 
40 60 80 4 149.74 0.3 
20 60 80 17 137.48 0.61 
80 60 16 17 166.38 0.07 
60 60 48 10.5 155.76 0.23 
40 40 80 4 152.82 1.37 
20 40 80 17 140.61 2.48 
80 40 16 17 158.96 0.21 
60 40 48 10.5 152.71 0.05 
40 20 80 4 170.76 3.68 
20 20 80 17 161.96 2.01 
80 20 16 17 152.54 0.58 
60 20 48 10.5 158.35 0.48 
20 20 16 4 109.11 0.53 
20 20 16 8 102.03 1.28 
20 20 16 10.5 101.64 0.68 
20 20 16 13 100.57 0.45 
20 20 16 17 98.33 0.82 
20 20 32 4 135.67 5.72 
20 20 32 8 120.06 1.46 
20 20 32 10.5 117.85 0.69 
20 20 32 13 116.29 1.65 
20 20 32 17 114.83 0.32 
20 20 48 4 161.18 2.38 
20 20 48 8 143.88 0.97 
20 20 48 10.5 137.42 2.34 
20 20 48 13 134.19 0.99 
20 20 48 17 130.56 1.51 
20 20 64 4 190.49 4.53 
20 20 64 8 161.76 4.9 
20 20 64 10.5 155.04 2.12 
20 20 64 13 146.8 1.42 
20 20 64 17 145.33 1.23 
20 20 80 4 217.05 11.28 
20 20 80 8 182.5 1.45 
20 20 80 10.5 171.12 2.78 
20 20 80 13 165.43 4.43 
20 20 80 17 161.96 2.01 
20 27 16 4 108.78 1.16 
20 27 16 8 102.1 0.33 
20 27 16 10.5 102.11 0.42 
20 27 16 13 99.62 0.38 
20 27 16 17 98.81 0.51 
20 27 32 4 133.15 1.72 
20 27 32 8 117.85 3.1 
20 27 32 10.5 115.72 1.78 
20 27 32 13 113.75 1.17 
20 27 32 17 113.07 0.49 
20 27 48 4 152.83 3.66 
20 27 48 8 135.97 2.58 
20 27 48 10.5 128.62 1.81 
20 27 48 13 128.15 1.05 
20 27 48 17 123.9 1.62 
20 27 64 4 180.18 13.14 
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20 27 64 8 152.35 2.21 
20 27 64 10.5 145.36 2.28 
20 27 64 13 141.12 1.21 
20 27 64 17 137.42 1.46 
20 27 80 4 198.59 6.53 
20 27 80 8 168.14 3.26 
20 27 80 10.5 159.46 3.47 
20 27 80 13 155.27 3.96 
20 27 80 17 150.9 1.64 
20 33 16 4 110.01 0.93 
20 33 16 8 102.63 0.73 
20 33 16 10.5 101.41 0.42 
20 33 16 13 99.44 0.62 
20 33 16 17 100.16 0.15 
20 33 32 4 129.14 2.44 
20 33 32 8 118.17 0.94 
20 33 32 10.5 115.48 0.86 
20 33 32 13 113.71 0.89 
20 33 32 17 109.99 1.06 
20 33 48 4 153.27 7.62 
20 33 48 8 133.04 2.89 
20 33 48 10.5 127.58 1.1 
20 33 48 13 127.8 1.89 
20 33 48 17 122.74 1.06 
20 33 64 4 165.32 9.36 
20 33 64 8 144.82 1.43 
20 33 64 10.5 141.84 1.07 
20 33 64 13 133.5 1.05 
20 33 64 17 134.07 1.61 
20 33 80 4 192.03 11.37 
20 33 80 8 161.04 3.23 
20 33 80 10.5 157.69 6.07 
20 33 80 13 152.09 1.56 
20 33 80 17 144.29 2.62 
20 40 16 4 109.74 0.85 
20 40 16 8 104.76 0.63 
20 40 16 10.5 102.35 0.37 
20 40 16 13 102.74 0.22 
20 40 16 17 101.57 0.6 
20 40 32 4 126.23 1.28 
20 40 32 8 117.04 1.74 
20 40 32 10.5 114.53 0.74 
20 40 32 13 114.29 1.42 
20 40 48 4 146.06 5.82 
20 40 32 17 111.26 0.41 
20 40 48 8 128.27 1.95 
20 40 48 10.5 127.51 0.6 
20 40 48 13 123.36 2 
20 40 48 17 120.96 1.18 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  Law and Kelton [1991] Inventory Data                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
 
%   Feed Forward Neural Net         % 
%Kilmer inv4param1outAvgCost 
%4 inputs (s,d,k,w), 1 output (avg cost) 
%s: reorder pt, d: reorder qty, k: setup cost, w:k/u 
%11 Apr 2007 
clear 
clc 
close all 
tic; 
data = load ('Table_B2_B3.dat'); 
[r c]=size(data); 
%data = load ('I:\My Documents\Research\Kilmer Dissertation\NN 
Model\NEWFF_Code\Table_B2_B3.dat'); 
rand('twister',0);  %rand(method,s) causes rand to use the generator... 
    %determined by method, and initializes the state of that generator... 
    %using the value of s. Method: 'twister', Use the Mersenne Twister... 
    %algorithm by Nishimura and Matsumoto the default in MATLAB Versions... 
    %7.4 and later). This method generates double-precision values in the... 
    %closed interval [2^(-53), 1-2^(-53)],with a period of (2^19937-1)/2... 
    % = 2.16e+6001. 'State' period = 2^1492 =1.37e+449. 'Seed' period... 
    % = 2^31-2 = 2147483646.  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                               DATA PREP                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Index for rnd is set to make sure the same data permutation is being used 
load('I:\My Documents\Research\Kilmer Dissertation\NN 
Model\NEWFF_Code\Code\randIndex.mat'); 
iter=100;      %number of iterations 
for k = 1:iter; 
    k 
    TrngData=data(rnd(k,71:234),:); %randomized trng data 
    P_Trng = data(rnd(k,71:234),1:4); %randomized 70 perc for trng data  
    T_Trng= data(rnd(k,71:234),5); %70 perc trng data target 
     
    TestData=data(rnd(k,1:70),:); %randomized test data 
    P_Test = data(rnd(k,1:70),1:4); %randomized 30 perc for test data 
    T_Test = data(rnd(k,1:70),5);%30 perc test data target     
        
    %Get size of data 
    [r_trng c_trng]=size(P_Trng); 
    m=r_trng;  %number of trng exemplars 
    [r_test c_test]=size(P_Test); 
    n=r_test;  %number of test exemplars 
    %Normalize P_Trng  
    P_Trng_min = min(P_Trng(:,1:4)); 
    P_Trng_max = max(P_Trng(:,1:4)); 
    a=0; 
    b=1; 
    for i = 1:164 
        P_Trng_norm(i,:) = ((P_Trng(i,1:4)-... 
            P_Trng_min)./(P_Trng_max-P_Trng_min))*(b-a)+ a; 
    end 
    %Normalize P_Test inputs using  same min and max from trng data 
    P_Test_min = P_Trng_min; 
    P_Test_max = P_Trng_max; 
    a=0; 
    b=1; 
    for i = 1:70 
        P_Test_norm(i,:) = ((P_Test(i,1:4)-... 
            P_Test_min)./(P_Test_max-P_Test_min))*(b-a)+ a; 
    end 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                         Ready for training                     % 
    %                   Create the Feed Forward net                  % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    net = newff([a b;a b;a b;a b],[5 5 1],{'tansig' 'tansig' 'purelin'}); 
  
    net.trainParam.epochs = 1000; 
    net.trainParam.goal = 0.001; 
    net.trainParam.show=NaN; 
    net = train(net,P_Trng_norm',T_Trng'); 
    Y = sim(net,P_Trng_norm'); %predict trng data targets Y 
    Y =Y'; 
    T = TrngData(:,5);  %actual trng data targets T 
    [Y T]; 
    Y_Test = sim(net,P_Test_norm'); %predict test data targets 
    Y_Test = Y_Test'; 
    T_Test = TestData(:,5); %actual test data targets 
    [Y_Test T_Test]; 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                      Error Measurements                                % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     %Mean Square Error for Trng Data 
    MSE_Trng_AvgCost_4_1 (k) = (((Y(:,1)-T(:,1))'*(Y(:,1)-T(:,1))))/m; 
  
    %Mean Square Error for Test Data 
    MSE_Test_AvgCost_4_1 (k) = (((Y_Test(:,1)-T_Test(:,1))'*(Y_Test(:,1)-
 T_Test(:,1))))/n; 
  
    %Mean Absolute Error for Trng Data 
    MAE_Trng_AvgCost_4_1 (k) = sum(abs((Y(:,1)-T(:,1))))/m; 
  
    %Mean Absolute Error for Test Data 
    MAE_Test_AvgCost_4_1 (k) = sum(abs((Y_Test(:,1)-T_Test(:,1))))/n; 
  
    %Max/Min Error for Trng Data 
    MaxErr_Trng_AvgCost_4_1 (k) = max(abs((Y(:,1)-T(:,1)))); 
    MinErr_Trng_AvgCost_4_1 (k) = min(abs((Y(:,1)-T(:,1)))); 
  
    %Max/Min Error for Test Data 
    MaxErr_Test_AvgCost_4_1 (k) = max(abs((Y_Test(:,1)-T_Test(:,1)))); 
    MinErr_Test_AvgCost_4_1 (k) = min(abs((Y_Test(:,1)-T_Test(:,1)))); 
end 
MSE_Trng_AvgCost_4_1_mean=mean(MSE_Trng_AvgCost_4_1) 
MSE_Test_AvgCost_4_1_mean=mean(MSE_Test_AvgCost_4_1) 
MAE_Trng_AvgCost_4_1_mean=mean(MAE_Trng_AvgCost_4_1) 
MAE_Test_AvgCost_4_1_mean=mean(MAE_Test_AvgCost_4_1) 
MaxErr_Trng_AvgCost_4_1_mean=mean(MaxErr_Trng_AvgCost_4_1) 
MinErr_Trng_AvgCost_4_1_mean=mean(MinErr_Trng_AvgCost_4_1) 
MaxErr_Test_AvgCost_4_1_mean=mean(MaxErr_Test_AvgCost_4_1) 
MinErr_Test_AvgCost_4_1_mean=mean(MinErr_Test_AvgCost_4_1) 
save ('I:\My Documents\Research\Kilmer Dissertation\NN Model\NEWFF_Code\Data 
Output\NEWFF_AvgCost_4_1.mat') 
toc;  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %                      Plot Predicted vs. True                           % 
 %                          for Test Data                                 % 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure, plot(Y_Test(:,1),'b*:'); 
hold on, plot(T_Test(:,1),'rd:'); 
legend('Predicted','Target') 
title('Predicted vs. True') 
xlabel('Test Exemplars'); 
ylabel('Output - Avg Cost (Dollars)'); 
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%   Radial Basis Function Neural Net        % 
 
%Kilmer inv4param1out  
%4 inputs (s,d,k,w), 1 output (avg cost) 
%s: reorder pt, d: reorder qty, k: setup cost, w:? 
%6 Apr 2007 
clear 
clc 
close all 
data = load ('Table_B2_B3.dat'); 
[r c]=size(data); 
%data = load ('I:\My Documents\Research\Kilmer Dissertation\NN 
Model\RBF_Code\Code\Table_B2_B3.dat'); 
rand('twister',0);  %rand(method,s) causes rand to use the generator... 
    %determined by method, and initializes the state of that generator... 
    %using the value of s. Method: 'twister', Use the Mersenne Twister... 
    %algorithm by Nishimura and Matsumoto the default in MATLAB Versions... 
    %7.4 and later). This method generates double-precision values in the... 
    %closed interval [2^(-53), 1-2^(-53)],with a period of (2^19937-1)/2... 
    % = 2.16e+6001. 'State' period = 2^1492 =1.37e+449. 'Seed' period... 
    % = 2^31-2 = 2147483646.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                               DATA PREP                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Index for rnd is set to make sure the same data permutation is being used 
load('I:\My Documents\Research\Kilmer Dissertation\NN 
Model\RBF_Code\Code\randIndex.mat'); 
  
iter=100;      %number of iterations 
for k = 1:iter 
    k 
    TrngData=data(rnd(k,71:234),:); %randomized trng data 
    P_Trng = data(rnd(k,71:234),1:4); %randomized 70 perc for trng data  
    T_Trng= data(rnd(k,71:234),5); %70 perc trng data target 
     
    TestData=data(rnd(k,1:70),:); %randomized test data 
    P_Test = data(rnd(k,1:70),1:4); %randomized 30 perc for test data 
    T_Test = data(rnd(k,1:70),5);%30 perc test data target 
         
    %Get size of data 
    [r_trng c_trng]=size(P_Trng); 
    m=r_trng;  %number of trng exemplars 
    [r_test c_test]=size(P_Test); 
    n=r_test;  %number of test exemplars 
  
    %Normalize inv4paramTrngData_P  
    P_Trng_min = min(P_Trng(:,1:4)); 
    P_Trng_max = max(P_Trng(:,1:4)); 
    a=0; 
    b=1; 
    for i = 1:164 
        P_Trng_norm(i,:) = ((P_Trng(i,1:4)-... 
            P_Trng_min)./(P_Trng_max-P_Trng_min))*(b-a)+ a; 
    end 
  
    %Normalize inv4paramTestData inputs using  same min and max from trng data 
    P_Test_min = P_Trng_min; 
    P_Test_max = P_Trng_max; 
    a=0; 
    b=1; 
    for i = 1:70 
         P_Test_norm(i,:) = ((P_Test(i,1:4)-... 
            P_Test_min)./(P_Test_max-P_Test_min))*(b-a)+ a; 
    end 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                         Ready for training                     % 
    %                         Create the RB net                      % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    net=newrb(P_Trng_norm',T_Trng',0.001,1.0,1); 
    Y = sim(net,P_Trng_norm'); %predict trng data outputs 
    Y =Y'; 
    T = TrngData(:,5);  %actual trng data targets 
    [Y T]; 
    Y_Test = sim(net,P_Test_norm'); %predict test data targets 
    Y_Test = Y_Test'; 
    T_Test = TestData(:,5); %actual test data targets 
    [Y_Test T_Test]; 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                      Error Measurements                                % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    %Mean Square Error for Trng Data 
    MSE_Trng_AvgCost_4_1 (k) = (((Y(:,1)-T(:,1))'*(Y(:,1)-T(:,1))))/m; 
  
    %Mean Square Error for Test Data 
    MSE_Test_AvgCost_4_1 (k) = (((Y_Test(:,1)-T_Test(:,1))'*(Y_Test(:,1)-
 T_Test(:,1))))/n; 
  
    %Mean Absolute Error for Trng Data 
    MAE_Trng_AvgCost_4_1 (k) = sum(abs((Y(:,1)-T(:,1))))/m; 
  
    %Mean Absolute Error for Test Data 
    MAE_Test_AvgCost_4_1 (k) = sum(abs((Y_Test(:,1)-T_Test(:,1))))/n; 
  
    %Max/Min Error for Trng Data 
    MaxErr_Trng_AvgCost_4_1 (k) = max(abs((Y(:,1)-T(:,1)))); 
    MinErr_Trng_AvgCost_4_1 (k) = min(abs((Y(:,1)-T(:,1)))); 
  
    %Max/Min Error for Test Data 
    MaxErr_Test_AvgCost_4_1 (k) = max(abs((Y_Test(:,1)-T_Test(:,1)))); 
    MinErr_Test_AvgCost_4_1 (k) = min(abs((Y_Test(:,1)-T_Test(:,1)))); 
  
end 
MSE_Trng_AvgCost_4_1_mean=mean(MSE_Trng_AvgCost_4_1) 
MSE_Test_AvgCost_4_1_mean=mean(MSE_Test_AvgCost_4_1) 
MAE_Trng_AvgCost_4_1_mean=mean(MAE_Trng_AvgCost_4_1) 
MAE_Test_AvgCost_4_1_mean=mean(MAE_Test_AvgCost_4_1) 
MaxErr_Trng_AvgCost_4_1_mean=mean(MaxErr_Trng_AvgCost_4_1) 
MinErr_Trng_AvgCost_4_1_mean=mean(MinErr_Trng_AvgCost_4_1) 
MaxErr_Test_AvgCost_4_1_mean=mean(MaxErr_Test_AvgCost_4_1) 
MinErr_Test_AvgCost_4_1_mean=mean(MinErr_Test_AvgCost_4_1) 
save ('I:\My Documents\Research\Kilmer Dissertation\NN Model\RBF_Code\Data 
Output\RBF_AvgCost_4_1.mat') 
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %                      Plot Predicted vs. True                           % 
 %                          for Test Data                                 % 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure, plot(Y_Test(:,1),'b*:'); 
hold on, plot(T_Test(:,1),'rd:'); 
legend('Predicted','Target') 
title('Predicted vs. True') 
xlabel('Test Exemplars'); 
ylabel('Output - Avg Cost (Dollars)'); 
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Appendix B:  Flying Training Model Details 
 
B1.  APPROACH: 
 

B1.1 Model Assumptions 
 
a. General Assumptions 
 

• Sorties greater than 99 minutes have ± 10 minutes standard deviation  
• Sorties less than 99 minutes have ± 5 minutes standard deviation  
• Aerial Refueling (AR) time to and from rendezvous point is 80 minutes 
• Senior Officer Course (SOC) sorties are all during daytime and no reflies 

are required  
• Reflies have priority over new class flights 
• Pilots fly in pairs, unless class has odd number of students; then single 

pilots fly alone 
• Fifteen-minute taxi-out and an additional fifteen-minute taxi-in incurred 

before and after each sortie (not counted as flying hours), respectively 
• All sorties require enough time left in day to accomplish mission 
• Schoolhouse Flying Window:  0830-0230 
• Training days = 246 
• AR resource capacity not affected by C-17 Abeam tactical maneuvers 
• In-house receivers have priority over non-in-house receivers for AR 
• Weather (Wx) and C-17 low ceiling delay factors: 

 
- C-17s do not take off with low ceiling and incur 2-4 hours delay using a 

 Uniform distribution 
- Wx delay will last ½ to 1 day using a Uniform distribution  

 
Quarter and Type Factor 
1 Qtr Severe Wx Delay 3.03% 
2 Qtr Severe Wx Delay 3.73% 
3 Qtr Severe Wx Delay 1.89% 
4 Qtr Severe Wx Delay 0.74% 
1 Qtr Low Ceiling Delay  5.59% 
2 Qtr Low Ceiling Delay 9.33% 
3 Qtr Low Ceiling Delay 1.64% 
4 Qtr Low Ceiling Delay 0.92% 
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• Maintenance (Mx) and other delay factors: 
 

Aircraft Type Unscheduled Mx and Others 
C-17 3.69% 
C-5 11.82% 
KC-135  3.17% 

 
- Unscheduled maintenance delays last from ½ to 1 day with a Uniform 

 distribution 
 

b. C-17 Assumptions 
 

• Staggered take-offs were calculated as follows:  First available C-17 is 
ready at 0830.  Second available C-17 is ready 17 minutes (0847) into the 
start of operations.  Additional take-offs occur every 15 minutes up to the 
total available aircraft for the day. 

 
• During C-17 tactical training on the VFR runway, the following resource 

capacity decreases occur: 
 

- VFR = 2 
- IFR & LL = 0 
 

• Pilot types with corresponding proficiency refly factors and Graduate 
Program Requirements Document (GPRD) entries: 

 
Course Refly Factor Entries 
ACAD 4.50% 40 
CAD  4.50% 80 
IAC 13.5% 114 
AC 13.5% 154 
PIQ 9.00% 392 
ACIQ 12.5% 94 
ACRQ 12.5% 18 
SOC 0.00% 20 
IP AD 0.00% 31 
IP DDS 0.00% 85 
IP TPS 0.00% 109 

 
- C-17 refly factors reflected the most recent refly requirements.  Rates 

reflected are 50% higher than the program flying training (PFT) plan. 
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• Sortie profiles 
 

Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6 Sortie 7 Sortie 8 Sortie 9 
ACAD LL/IFR LL/VFR LL/VFR AR/LL/VFR LL/VFR AR/LL/IFR    
CAD LL/IFR LL/VFR LL/VFR AR/LL/VFR      
IAC AR/VFR LL/IFR/VFR AR/VFR AR/VFR      
AC AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR AR/LL/VFR     
PIQ LL/IFR/VFR LL/IFR/VFR LL/IFR/VFR       
ACIQ VFR AR/VFR AR/VFR AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR CS NVG AR/LL/VFR 
ACRQ AR/LL/VFR AR/LL/VFR AR/VFR AR/VFR AR/CS NVG AR/LL/VFR    
SOC LL/IFR/VFR LL/IFR/VFR        
IP AD AD         
IP DDS AR/IFR/VFR         
IP TPS LL/IFR/VFR         

 
c. C-5 Assumptions 
 

• Pilot types with corresponding proficiency refly factors and GPRD entries: 
 

Course Refly Factor Entries 
AC 5.40% 8 
ACAR  12.54% 12 
ACIQ 6.62% 10 
IAC 7.47% 12 
SOC 0.00% 0 
IP 0.00% 72 

 
• Sortie profiles 

 
Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6 
AC IFR/VFR IFR/VFR IFR/VFR IFR/VFR IFR/VFR IFR/VFR
ACAR AR AR AR AR AR  
ACIQ IFR/VFR IFR/VFR IFR/VFR IFR/VFR   
IAC IFR/VFR IFR/VFR IFR/VFR IFR/VFR   
SOC IFR/VFR      
IP AR or IFR/VFR      

 
d. KC-135 Assumptions 

 
• Most evaluation sorties are flown during daylight hours 
• IAC sorties are flown anytime 
• AC, ACRQ, ACIQ, & PIQ sorties - first two sorties flown during daylight 

hours, next two flown during nighttime hours, remaining sorties flown 
anytime 

 
• VFR and IFR pattern times doubled for all sorties, since sorties are usually 

flown with two student pilots in the model  
 

• Staggered take-offs are calculated as follows:  First KC-135 ready 7 
minutes (0837) into the start of operation.  The 2nd to 5th aircraft becomes 
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available in 15-minute intervals.  The 6th to 10th aircraft becomes available 
in 7.5-minute intervals. 

 
• 25% of all sorties will fly off-station except for SOCs and IPs 

 
• KC-135 refly factors are not incorporated in the model since these are 

already considered into their allotted flying time delays. 
 

• Pilot types and corresponding GPRD 
 

Course Entries 
ACRQ 34 
AC  150 
ACIQ  68 
PIQ 206 
IAC  92 
SOC 30 
IP 246 

• Sortie profiles 
 

Course Sortie 1 Sortie 2 Sortie 3 Sortie 4 Sortie 5 Sortie 6 Sortie 7 Sortie 8 Sortie 9 Sortie 10 Sortie 11 
ACRQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR    
AC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR      
ACIQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR  
PIQ AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR 
IAC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR      
SOC AR/IFR/VFR AR/IFR/VFR AR/IFR/VFR         
IP AR/IFR/VFR           

 
e. Bird Aircraft Strike Hazard (BASH) and Day/Night time Assumptions 

 
• BASH occurs Dec-Jan: 1700-1859 hours 
• Daylight hours: 0830-1759 (non BASH months) 
• Daylight hours: 0830-1659 (BASH months) 
• Nighttime hours: 1800-0230 (non BASH months) 
• Nighttime hours: 1700-0230 (BASH months)  

 
f. Resource Capacity Assumptions 
 

Resource Capacity 
C-17 Fleet 8-6 (day-night) 
C-5 Fleet  2-2 (day-night) 
KC-135 Fleet  10-5 (day-night) 
KC-135 Tanker AR Track 4 
Receiver AR Track  4 
Additional Tanker AR Track 4 
LL Pattern Infinite 
IFR Pattern  8 
VFR Pattern  4 
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B1.2 Limitation(s) 
 

• Day and nighttime transition did not vary, as stated above in the 
assumptions, except for BASH months 

 
B1.3 Summary of Input 

 
The ARENA model required input:   

• Class size and representative arrival schedule, including instructor 
proficiency (IP) continuation training 

• Pattern (C-17 Abeam tactical, VFR, IFR, LL, and AR) process times  
• Resource capacity 

 
B1.4 Summary of Output (Measures of Performance) 

 
The model computed the total time in training days (noted in the model as time in 

system (TiS)) each pilot needed to complete the flying training portion of his or her 

curriculum.  The model averaged each pilot’s TiS over the course of one training year 

(246 training days).  The model output also included the number of pilot types graduating 

from each course.  The Graduate Program Requirements Document (GPRD) was 

compared to the pilot graduates from the model while the model TiS was compared to the 

class type allotted flying training days.   
 

B2.  VERIFICATION AND VALIDATION: 
 

Verification determines whether a model performs as the developer intended.  The 

simulation was verified by tracking individual entities through several key points in the 

system.  The animation option in ARENA facilitated the verification process by allowing 

visual observation of proper model behavior.  All assumptions were tested to verify 

proper coding in the model. 

Validation is the process of determining if the model adequately represents the 

‘real world’, guided by the intended uses of the model.  Two methods of validation were 

performed for the flying training model.  The projected flying hours for the flying 

training were compared to the allotted TiS in the Programmed Flying Training (PFT) 

plan.  This comparison showed the TiS from the simulation is comparable to the PFT and 

remains a valid representation of reality.  The second method of validation was conducted 
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by several pilot instructors as the subject matter experts (SMEs).  These SMEs examined 

the flying training sequences as modeled, compared the results to the actual flying 

training conducted, and found it to be very closely representative of reality.
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Appendix C:  Flying Training Model Data and Code 
 
 

Table C1 - FTM M1 and M2 Input Data 

Scenario  YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1557 0.0462 12.6808 0.0316 6.4191 0.0266 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

2 6.2384 0.0462 14.0754 0.0632 7.7006 0.0537 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

3 5.9263 0.0403 12.9446 0.0424 6.6951 0.0384 23.4135 0.2508 11.2771 0.3188 8.7220 0.0228

4 5.9783 0.0416 13.0248 0.0425 6.7397 0.0398 18.4696 0.2581 11.3111 0.2501 9.3567 0.0303

5 6.1908 0.0461 14.3263 0.0684 7.4432 0.0573 23.4135 0.2508 11.2771 0.3188 8.7220 0.0228

6 6.1166 0.0476 12.7761 0.0370 6.6835 0.0342 18.4694 0.2581 11.1843 0.2259 9.5007 0.0338

7 6.1908 0.0461 14.1991 0.0675 7.8308 0.0560 25.9585 0.2706 33.3538 0.9757 9.4426 0.0303

8 6.2384 0.0462 13.9236 0.0568 7.3231 0.0474 25.9578 0.2707 34.4337 1.0436 9.2907 0.0278

9 5.9263 0.0403 12.7601 0.0357 6.6725 0.0352 30.8988 0.2917 26.9670 0.9839 8.7166 0.0245

10 6.1908 0.0461 14.0097 0.0583 7.3910 0.0497 30.9002 0.2918 28.0356 1.0086 8.7099 0.0249

11 6.1166 0.0476 12.9300 0.0412 6.6998 0.0351 25.9578 0.2707 34.4337 1.0436 9.2907 0.0278

12 5.9263 0.0403 12.8345 0.0408 6.4323 0.0333 23.4135 0.2508 12.1284 0.3654 8.7201 0.0232

13 5.9637 0.0491 14.4040 0.0737 7.7715 0.0595 30.9047 0.2914 27.8947 1.0666 8.8496 0.0257

14 5.9263 0.0403 12.6627 0.0355 6.4138 0.0308 23.4137 0.2507 12.1430 0.3515 8.8525 0.0258

15 6.1557 0.0462 12.8481 0.0365 6.4306 0.0293 23.4137 0.2507 11.5657 0.3356 8.8590 0.0267

16 6.1557 0.0462 12.8029 0.0327 6.6972 0.0302 30.9028 0.2913 28.5075 1.0995 8.8547 0.0263

17 6.1908 0.0461 14.5605 0.0782 7.9131 0.0642 18.4694 0.2581 11.1843 0.2259 9.5007 0.0338

18 6.0188 0.0487 14.1789 0.0635 7.4681 0.0510 18.4694 0.2581 10.7031 0.2348 9.5034 0.0339

19 6.1166 0.0476 12.6638 0.0338 6.4198 0.0310 30.9047 0.2914 27.8947 1.0666 8.8496 0.0257

20 5.9637 0.0491 14.2908 0.0748 7.4114 0.0630 18.4696 0.2581 11.3111 0.2501 9.3567 0.0303

21 5.9637 0.0491 13.9996 0.0622 7.3702 0.0544 18.4696 0.2581 10.8002 0.2483 9.3608 0.0300

22 6.1166 0.0476 12.8302 0.0383 6.4316 0.0319 25.9585 0.2706 33.3538 0.9757 9.4426 0.0303

23 6.0188 0.0487 14.4808 0.0744 7.5455 0.0639 30.9028 0.2913 28.5075 1.0995 8.8547 0.0263

24 5.9783 0.0416 12.7151 0.0335 6.4500 0.0333 18.4694 0.2581 10.7031 0.2348 9.5034 0.0339

25 5.9783 0.0416 12.8308 0.0364 6.6975 0.0359 30.8988 0.2917 26.9670 0.9839 8.7166 0.0245

26 5.9783 0.0416 12.8936 0.0400 6.4673 0.0355 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280

27 6.0188 0.0487 14.3430 0.0699 7.9071 0.0604 25.9585 0.2706 33.9312 1.0540 9.4371 0.0308

28 6.2384 0.0462 14.3517 0.0736 7.7212 0.0547 30.9002 0.2918 28.0356 1.0086 8.7099 0.0249

29 6.2384 0.0462 14.1947 0.0649 7.3413 0.0484 25.9585 0.2706 33.9312 1.0540 9.4371 0.0308

30 6.1557 0.0462 12.9734 0.0380 6.7067 0.0314 18.4696 0.2581 10.8002 0.2483 9.3608 0.0300

31 5.9637 0.0491 14.1089 0.0620 7.7432 0.0536 23.4137 0.2507 12.1430 0.3515 8.8525 0.0258

32 6.0188 0.0487 14.6932 0.0830 8.0567 0.0885 25.9578 0.2707 33.4865 1.0396 9.2856 0.0280
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Table C2 - FTM M3 and M4 Input Data 

Scenario  YA1_mean YA1 _se YA2_mean YA2_se YA3_mean YA3_se YB1_mean YB1 _se YB2_mean YB2_se YB3_mean YB3_se

1 6.1688 0.0319 12.9598 0.0946 6.6167 0.0516 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

2 5.7931 0.1040 13.7454 0.0921 7.4438 0.1014 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

3 5.8107 0.1160 12.2405 0.1771 6.2656 0.1277 27.8492 1.4748 6.9670 1.5784 8.7341 0.0219

4 6.0430 0.1118 13.0299 0.0373 6.7922 0.0357 9.7486 1.8466 8.8165 1.4247 9.5994 0.0815

5 6.5371 0.1118 12.8953 0.3032 7.0397 0.1810 27.8492 1.4748 6.9670 1.5784 8.7341 0.0219

6 5.5423 0.1337 12.3830 0.1132 7.1719 0.1207 8.5057 1.9503 6.9195 1.3087 9.5723 0.1062

7 5.9877 0.1030 13.6906 0.1829 7.9023 0.0495 23.8390 1.4056 19.3439 1.9034 9.4619 0.0285

8 6.1279 0.0484 13.1918 0.2011 7.2591 0.1633 22.6695 1.3697 14.5712 5.6307 9.6486 0.1239

9 5.9772 0.1163 12.4706 0.1092 6.5079 0.0563 34.5554 1.0409 22.8290 2.7062 8.7144 0.0239

10 6.1849 0.0297 14.0184 0.0552 7.1120 0.1476 32.1382 1.8045 20.6614 2.3895 8.6816 0.0277

11 6.0424 0.0796 12.6450 0.1031 6.8391 0.0527 22.6695 1.3697 14.5712 5.6307 9.6486 0.1239

12 5.9945 0.0512 12.3636 0.1469 5.9680 0.1210 25.9414 1.1908 12.0367 0.3582 9.1777 0.1605

13 5.9908 0.0330 13.6461 0.1976 6.8775 0.1823 37.6617 1.2535 6.5071 5.2755 9.1126 0.1573

14 5.9006 0.1306 12.0954 0.1493 6.1520 0.1049 28.3192 1.0587 12.3273 0.2999 9.2576 0.1659

15 6.1678 0.0312 13.2700 0.1048 6.3449 0.0389 27.1828 1.0416 11.6694 0.3129 9.2129 0.1730

16 6.1571 0.0343 12.4066 0.1226 6.6983 0.0258 37.2627 1.1660 22.9842 3.2063 9.0409 0.1986

17 5.9046 0.1619 13.8179 0.2177 7.5553 0.1596 8.5057 1.9503 6.9195 1.3087 9.5723 0.1062

18 6.1331 0.0579 13.7340 0.1032 6.9409 0.1630 8.4195 1.7912 10.7005 0.2122 9.7411 0.0918

19 6.0932 0.0341 12.6871 0.0298 5.9999 0.1081 37.6617 1.2535 6.5071 5.2755 9.1126 0.1573

20 6.0004 0.1593 12.5615 0.2999 6.7142 0.2069 9.7486 1.8466 8.8165 1.4247 9.5994 0.0815

21 5.9904 0.1415 12.5357 0.2352 6.1513 0.2061 9.7993 1.8961 5.0097 1.7744 9.5305 0.0785

22 6.3171 0.1053 12.0285 0.1961 5.8587 0.1469 23.8390 1.4056 19.3439 1.9034 9.4619 0.0285

23 6.0329 0.0378 14.0277 0.1132 6.7975 0.2114 37.2627 1.1660 22.9842 3.2063 9.0409 0.1986

24 6.0923 0.1259 12.7524 0.0319 6.8659 0.0957 8.4195 1.7912 10.7005 0.2122 9.7411 0.0918

25 6.1928 0.1109 12.6572 0.0909 6.6959 0.0320 34.5554 1.0409 22.8290 2.7062 8.7144 0.0239

26 6.3356 0.1052 12.8945 0.0372 6.5363 0.0305 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386

27 6.0397 0.0376 13.4955 0.1973 7.7209 0.0990 23.8637 1.5165 2.8006 5.9014 9.4504 0.0282

28 5.8725 0.1104 13.6806 0.2404 7.3720 0.1792 32.1382 1.8045 20.6614 2.3895 8.6816 0.0277

29 5.7740 0.1101 13.7861 0.1021 6.9922 0.2019 23.8637 1.5165 2.8006 5.9014 9.4504 0.0282

30 6.5145 0.1145 12.7785 0.1641 6.9370 0.0901 9.7993 1.8961 5.0097 1.7744 9.5305 0.0785

31 5.9785 0.0344 12.3381 0.2692 6.1082 0.2690 28.3192 1.0587 12.3273 0.2999 9.2576 0.1659

32 6.0263 0.0379 14.1405 0.1654 7.9448 0.2385 20.7128 1.3731 23.0700 4.2829 9.6827 0.1386
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Table C3 - FTM M5 Input Data 

Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 (4+11*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+8.94*BETA(1.25,5.11)) (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

2 (4+9*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+16*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11))  (6+65*BETA(1.25,5.11))

3 (4+7*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+13*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+82*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

4 (4+7*BETA(1.25,5.11))  (9+23*BETA(1.25,5.11)) (4+12*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

5 (4+9*BETA(1.25,5.11))  (9+23*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+82*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

6 (4+11*BETA(1.25,5.11))  (9+19*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+18*BETA(1.25,5.11))

7 (4+9*BETA(1.25,5.11))  (9+27*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+154*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

8 (4+9*BETA(1.25,5.11))  (9+23*BETA(1.25,5.11)) (4+12*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11))  (6+23*BETA(1.25,5.11))

9 (4+7*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+172*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

10 (4+9*BETA(1.25,5.11))  (9+22*BETA(1.25,5.11)) (4+18*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

11 (4+11*BETA(1.25,5.11))  (9+20*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11))  (6+23*BETA(1.25,5.11))

12 (4+7*BETA(1.25,5.11))  (9+19*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+80*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

13 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+174*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

14 (4+7*BETA(1.25,5.11))  (9+19*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+91*BETA(1.25,5.11))  (6+61*BETA(1.25,5.11))

15 (4+11*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+73*BETA(1.25,5.11))  (6+65*BETA(1.25,5.11))

16 (4+11*BETA(1.25,5.11))  (9+22*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11))  (6+25*BETA(1.25,5.11))

17 (4+9*BETA(1.25,5.11))  (9+27*BETA(1.25,5.11)) (4+20*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+18*BETA(1.25,5.11))

18 (4+8*BETA(1.25,5.11))  (9+26*BETA(1.25,5.11)) (4+17*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

19 (4+11*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+174*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

20 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+29*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

21 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+24*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

22 (4+11*BETA(1.25,5.11))  (9+21*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+154*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

23 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11))  (6+25*BETA(1.25,5.11))

24 (4+7*BETA(1.25,5.11))  (9+20*BETA(1.25,5.11)) (4+8*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

25 (4+7*BETA(1.25,5.11))  (9+20*BETA(1.25,5.11)) (4+8.9*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+172*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

26 (4+7*BETA(1.25,5.11))  (9+23*BETA(1.25,5.11)) (4+10*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11))  (6+24*BETA(1.25,5.11))

27 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+25*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

28 (4+9*BETA(1.25,5.11))  (9+28*BETA(1.25,5.11)) (4+18*BETA(1.25,5.11))  (3+72*BETA(1.25,5.11)) (1+173*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

29 (4+9*BETA(1.25,5.11))  (9+22*BETA(1.25,5.11)) (4+15*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+169*BETA(1.25,5.11))  (6+11*BETA(1.25,5.11))

30 (4+11*BETA(1.25,5.11))  (9+22*BETA(1.25,5.11)) (4+9*BETA(1.25,5.11))  (3+55*BETA(1.25,5.11)) (1+81*BETA(1.25,5.11))  (6+19*BETA(1.25,5.11))

31 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+19*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+91*BETA(1.25,5.11))  (6+61*BETA(1.25,5.11))

32 (4+8*BETA(1.25,5.11))  (9+25*BETA(1.25,5.11)) (4+27*BETA(1.25,5.11))  (3+68*BETA(1.25,5.11)) (1+182*BETA(1.25,5.11))  (6+24*BETA(1.25,5.11))
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Table C4 - FTM M6 (Regression) Input Data 

Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 6.1682 12.6273 6.3018 23.2866 10.1925 8.7431 

2 6.2773 14.1993 7.6807 23.2866 10.1925 8.8799 

3 5.9007 13.0515 6.6728 23.2866 10.1925 8.7431 

4 5.9659 13.0515 6.6728 18.6039 12.7268 9.3669 

5 6.2121 14.2965 7.3532 23.2866 10.1925 8.7431 

6 6.103 12.7633 6.6293 18.6039 12.7268 9.5037 

7 6.2121 14.1993 7.6807 26.3327 32.1215 9.4454 

8 6.2773 14.0633 7.3532 26.3327 32.1215 9.3086 

9 5.9007 12.8183 6.6728 31.0154 29.5872 8.6848 

10 6.2121 14.0633 7.3532 31.0154 29.5872 8.6848 

11 6.103 12.9965 6.6293 26.3327 32.1215 9.3086 

12 5.9007 12.9155 6.3453 23.2866 10.1925 8.7431 

13 6.0098 14.4875 7.7242 31.0154 29.5872 8.8216 

14 5.9007 12.6823 6.3453 23.2866 10.1925 8.8799 

15 6.1682 12.8605 6.3018 23.2866 10.1925 8.8799 

16 6.1682 12.7633 6.6293 31.0154 29.5872 8.8216 

17 6.2121 14.4325 7.6807 18.6039 12.7268 9.5037 

18 6.075 14.1183 7.3967 18.6039 12.7268 9.5037 

19 6.103 12.6273 6.3018 31.0154 29.5872 8.8216 

20 6.0098 14.3515 7.3967 18.6039 12.7268 9.3669 

21 6.0098 14.1183 7.3967 18.6039 12.7268 9.3669 

22 6.103 12.8605 6.3018 26.3327 32.1215 9.4454 

23 6.075 14.3515 7.3967 31.0154 29.5872 8.8216 

24 5.9659 12.6823 6.3453 18.6039 12.7268 9.5037 

25 5.9659 12.8183 6.6728 31.0154 29.5872 8.6848 

26 5.9659 12.9155 6.3453 26.3327 32.1215 9.3086 

27 6.075 14.2543 7.7242 26.3327 32.1215 9.4454 

28 6.075 14.4875 7.7242 31.0154 29.5872 8.6848 

29 6.2773 14.2965 7.3532 26.3327 32.1215 9.4454 

30 6.1682 12.9965 6.6293 18.6039 12.7268 9.3669 

31 6.0098 14.2543 7.7242 23.2866 10.1925 8.8799 

32 6.0750 14.4875 7.7242 26.3327 32.1215 9.3086 
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Table C5 - FTM M7 (ANN-GRNN) Input Data 

Scenario  YA1 YA2 YA3 YB1 YB2 YB3 

1 6.1521 12.684 6.4466 23.212 12.332 8.7172 

2 6.2768 14.089 7.6894 23.213 11.577 8.8374 

3 5.9116 12.955 6.6936 23.212 11.513 8.718 

4 5.9701 13.038 6.7563 18.677 11.33 9.3888 

5 6.2277 14.35 7.4312 23.212 11.513 8.718 

6 6.1023 12.785 6.6971 18.677 11.166 9.5264 

7 6.2277 14.206 7.807 26.259 33.266 9.4217 

8 6.2768 13.944 7.3424 26.259 34.698 9.2681 

9 5.9116 12.775 6.6629 31.086 26.835 8.7102 

10 6.2277 14.021 7.3755 31.088 28.347 8.7016 

11 6.1023 12.94 6.7204 26.259 34.698 9.2681 

12 5.9116 12.838 6.4442 23.212 12.332 8.7172 

13 5.9823 14.486 7.8085 31.091 27.324 8.8438 

14 5.9116 12.676 6.4195 23.213 12.256 8.833 

15 6.1521 12.844 6.4587 23.213 11.577 8.8374 

16 6.1521 12.81 6.7074 31.09 28.936 8.85 

17 6.2277 14.568 7.8878 18.677 11.166 9.5264 

18 6.0352 14.113 7.4819 18.677 10.718 9.5256 

19 6.1023 12.672 6.4422 31.091 27.324 8.8438 

20 5.9823 14.391 7.4477 18.677 11.33 9.3888 

21 5.9823 14.089 7.4021 18.677 10.787 9.3934 

22 6.1023 12.846 6.4578 26.259 33.266 9.4217 

23 6.0352 14.403 7.5677 31.09 28.936 8.85 

24 5.9701 12.725 6.45 18.677 10.718 9.5256 

25 5.9701 12.844 6.7052 31.086 26.835 8.7102 

26 5.9701 12.906 6.471 26.259 33.259 9.2633 

27 6.0352 14.3 7.9248 26.259 34.171 9.4146 

28 6.156 14.488 7.8927 31.088 28.347 8.7016 

29 6.2768 14.202 7.3588 26.259 34.171 9.4146 

30 6.1521 12.967 6.7141 18.677 10.787 9.3934 

31 5.9823 14.195 7.8021 23.213 12.256 8.833 

32 6.156 14.488 7.8927 26.259 33.259 9.2633 
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Table C6 - FTM Bonferroni α Comparison 

 Individual Confidence Interval 

 99.998% 99.985% 99.857% 99.29% 98.57% 97.14% 96.43% 92.86% 

 Overall Confidence Interval 
(Bonferroni α) 

HL Output 99.99% 
(0.0001) 

99.9% 
(0.001) 

99% 
(0.01) 

95% 
(0.05) 

90% 
(0.1) 

80% 
(0.2) 

75% 
(0.25) 

50% 
(0.5) 

Z1 All but 
M3 

M2, M4, 
M5, M7

M2, M4, 
M5, M7

M2, M5, 
M7 

M2, M5, 
M7

M2, M5, 
M7

M2, M5, 
M7 

M2, M5, 
M7 

Z2 All but 
M5 

All but 
M5 

All but 
M5

All but 
M5

All but 
M5

All but 
M5

All but 
M5 

All but 
M4, M5

Z3 All but 
M3 

M2, M4, 
M5, M7

M2, M4, 
M5, M7

M2, M5, 
M7

M2, M5, 
M7

M2, M5, 
M7 

M2, M5, 
M7 

M2, M5, 
M7 
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                  Rep_determination_by_precision_BaseA.m    
 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
 
%This file determines the desired precision accuracy.  It estimates the 
%mean with a specified error or precision. 
%Reference: Law text, 4th ed, eqn 9.2 
%For multiple measures of performance (3 in our case, per base), use the 
%Bonferroni inequality  
%Reference: Law text, 4th ed, eqn 9.11 
clc; 
close all; 
clear; 
%Load the file you need 
data1 = load ('file1.txt'); 
data2 = load ('file2.txt'); 
data3 = load ('file3.txt'); 
alpha = .10                %specify alpha        
alpha_bonf = alpha/3;%we want a ((1-alpha)/outputs)Bonferroni C.I., 2-tailed 
beta1 = .10;                               %desired absolute error for data1 
beta2 = .10;                               %desired absolute error for data2 
beta3 = .10;                               %desired absolute error for data3 
sim_numrep = 30;             %number of replication in the ARENA simulation 
sim_numrep_start = sim_numrep; 
sim_numrep_stop = 1000; %ensure we don’t go over 1000 reps     
tstat_orig=tinv((1-alpha/2),(sim_numrep-1)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           C-5 ACAR TiS                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           Take mean by rep                              % 
for RepBaseAC_5ACAR=1:sim_numrep; 
ind1 = find(data1(:,3)== RepBaseAC_5ACAR); 
Mean_RepBaseAC_5ACAR(RepBaseAC_5ACAR) = mean(data1(ind1,1)); 
end 
%                             Build Halfwidth                             % 
C5_ACAR_Avg = mean(Mean_RepBaseAC_5ACAR) 
C5_ACAR_Var = var(Mean_RepBaseAC_5ACAR) 
data1_halfwidth_orig = tstat_orig*sqrt(C5_ACAR_Var/sim_numrep) 
flag_1 = 0; 
for i1 = sim_numrep_start:sim_numrep_stop 
    tstat1=tinv((1-alpha_bonf/2),(i1-1)); 
    data1_halfwidth = tstat1*sqrt(C5_ACAR_Var/i1); 
    %need to know how many more reps (n1) until halfwidth is <= beta1 
    if data1_halfwidth <= beta1 
        fprintf('\nThe number of reps needed for the sim is %4d',i1) 
        fprintf('\nThe achieved data halfwidth value is %1.4f\n',data1_halfwidth) 
        flag_1 = 1; 
        break; 
    end 
end 
if flag_1 == 0 
   fprintf('\nThe number of reps for the sim must be increased larger than 
%4d\n',sim_numrep_stop)  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           KC-135 PIQ TiS                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           Take mean by rep                              % 
for RepBaseAKC_135PIQ=1:sim_numrep; 
    ind2 = find(data2(:,3)== RepBaseAKC_135PIQ); 
    Mean_RepBaseAKC_135PIQ(RepBaseAKC_135PIQ) = mean(data2(ind2,1)); 
end 
%                             Build Halfwidth                             % 
KC135_PIQ_Avg = mean(Mean_RepBaseAKC_135PIQ) 
KC135_PIQ_Var = var(Mean_RepBaseAKC_135PIQ) 
data2_halfwidth_orig = tstat_orig*sqrt(KC135_PIQ_Var/sim_numrep) 
flag_2 = 0; 
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for i2 = sim_numrep_start:sim_numrep_stop 
    tstat2=tinv((1-alpha_bonf/2),(i2-1)); 
    data2_halfwidth = tstat2*sqrt(KC135_PIQ_Var/i2); 
    %need to know how many more reps (n2) until halfwidth is <= beta2 
    if data2_halfwidth <= beta2 
        fprintf('\nThe number of reps needed for the sim is %4d',i2) 
        fprintf('\nThe achieved data halfwidth value is %1.4f\n',data2_halfwidth) 
        flag_2 = 1; 
        break; 
    end 
end 
if flag_2 == 0 
   fprintf('\nThe number of reps for the sim must be increased larger than 
%4d\n',sim_numrep_stop)  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          KC-135 IAC TiS                                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           Take mean by rep                              % 
for RepBaseAKC_135IAC=1:sim_numrep; 
    ind3 = find(data3(:,3)== RepBaseAKC_135IAC); 
    Mean_RepBaseAKC_135IAC(RepBaseAKC_135IAC)= mean(data3(ind3,1)); 
end 
%                             Build Halfwidth                             % 
KC135_IAC_Avg = mean(Mean_RepBaseAKC_135IAC) 
KC135_IAC_Var = var(Mean_RepBaseAKC_135IAC) 
data3_halfwidth = tstat_orig*sqrt(KC135_IAC_Var/sim_numrep); 
flag_3 = 0; 
for i3 = sim_numrep_start:sim_numrep_stop 
    tstat3=tinv((1-alpha_bonf/2),(i3-1)); 
    data3_halfwidth = tstat3*sqrt(KC135_IAC_Var/i3); 
    %need to know how many more reps (n3) until halfwidth is <= beta3 
    if data3_halfwidth <= beta3 
        fprintf('\nThe number of reps needed for the sim is %4d',i3) 
        fprintf('\nThe achieved data halfwidth value is %1.4f\n',data3_halfwidth) 
        flag_3 = 1; 
        break; 
    end 
end 
if flag_3 == 0 
   fprintf('\nThe number of reps for the sim must be increased larger than 
%4d\n',sim_numrep_stop)  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
BaseA_TotalNumReps_perResponse=[i1,i2,i3] 
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BaseA_C5.m 
 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
 
%This file will run the Arena simulation model given the desired model parameter 
%changes 
%%%%%%%%%%%%%%%%%%%%%%      Arena Front End     %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%To run simulation from command window, use this command  
%and make sure you are in the right directory:    
%BaseA_C5('F:\750GB My Documents\Research\Models\Altus Model\Lower Level Models\C-5\C-5 
with AR\Base A\Scenario Runs\117 Reps ARENA 23Jan08\Base A C-5.doe')  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [tmp1, tmp2] = BaseA_C5(strfile) 
clc; 
scenario_Values = load('BaseA_TrngScenarios.txt'); 
tic; 
for i = 1:32 
    %%%%%%%%%%%LOCATE ARENA SERVER%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    arna = actxserver('arena.application'); 
    arnaModel = arna.Model; 
    mymodel = arnaModel.invoke('Open',strfile); 
    arnaModules = mymodel.Modules; 
    mymodel.numberofreplications = num2str(117);   %Select number of replications 
 %%%%%%%%%%%%CHANGE INPUTS IN ARENA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Always check the "object" number to ensure you're pointing to the right 
 % variables or resources 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Variables Change 
    idx = arnaModules.Find(1,'object.184174');   %C-5 ACAR Pilot Total 
    C5_ACAR_PT = arnaModules.Item(idx); 
    set(C5_ACAR_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,2)); 
    % C5ACARPT = get(C5_ACAR_PT,'Data',['Initial Value(',num2str(1),')']); 
    idx = arnaModules.Find(1,'object.183540');   %KC-135 PIQ Pilot Total 
    KC135_PIQ_PT = arnaModules.Item(idx); 
    set(KC135_PIQ_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,3)); 
    %KC135PIQPT = get(KC135_PIQ_PT,'Data',['Initial Value(',num2str(1),')']); 
    idx = arnaModules.Find(1,'object.183537');   %KC-135 IAC Pilot Total 
    KC135_IAC_PT = arnaModules.Item(idx); 
    set(KC135_IAC_PT,'Data',['Initial Value(',num2str(1),')'],scenario_Values(i,4)); 
    %KC135IACPT = get(KC135_IAC_PT,'Data',['Initial Value(',num2str(1),')']); 
    %Resources Change 
    idx = arnaModules.Find(1,'object.487855');   %C-5_1 Fleet Resource 
    C5_ACFT1 = arnaModules.Item(idx); 
    set(C5_ACFT1,'Data','Capacity',scenario_Values(i,5)); 
    %C5ACFT_1 = get(C5_ACFT1,'Data','Capacity'); 
    idx = arnaModules.Find(1,'object.487853');   %KC-135 Fleet Resource 
    KC135_ACFT = arnaModules.Item(idx); 
    set(KC135_ACFT,'Data','Capacity',scenario_Values(i,6)); 
    %KC135ACFT = get(KC135_ACFT,'Data','Capacity'); 
    mymodel.Go;                                    %Run model                        
    mymodel.End                                    %Stop simulation model 
    %Create directory to retrieve output files from 
    %Copy files from current directory to different folders per scenario 
    Directory = ['F:\750GB My Documents\Research\Models\Altus Model\Lower Level Models\C-      
5\C-5 with AR\Base A\Scenario Runs\117 Reps ARENA 23Jan08\Scenario' num2str(i)]; 
    mkdir(Directory) 
    copyfile('Base A C_5 ACAR Output.txt',Directory) 
    copyfile('Base A KC_135 PIQ Output.txt',Directory) 
    copyfile('Base A KC_135 IAC Output.txt',Directory) 
    copyfile('Base A TotGrads Output.txt',Directory) 
    copyfile('Base A KC_135 IAC VRT Output.txt',Directory) 
    copyfile('Base A KC_135 PIQ VRT Output.txt',Directory) 
    copyfile('Base A C_5 ACAR VRT Output.txt',Directory) 
    copyfile('Base A C-5.out',Directory) 
end 
toc; 
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Appendix D:  ALS Sortie Generation Model Data and Code 
 
 

Table D1 - ASGM M1 and M2 Input Data 

Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se
1 0.6666 0.0002 0.1666 0.0001 3.2448 0.0009
2 0.6668 0.0002 0.1667 0.0001 3.2444 0.0009
3 0.6672 0.0002 0.1668 0.0001 3.2446 0.0008
4 0.6671 0.0002 0.1666 0.0001 3.2444 0.0006
5 0.6668 0.0002 0.1666 0.0001 3.2448 0.0007
6 0.6667 0.0002 0.1666 0.0001 3.2453 0.0007
7 0.6673 0.0002 0.1666 0.0001 3.2446 0.0006
8 0.6672 0.0002 0.1667 0.0001 3.2444 0.0007
9 0.6670 0.0002 0.1665 0.0001 3.2453 0.0006

 

Table D2 - ASGM M3 and M4 Input Data 

Scenario Y1_mean Y1 _se Y2_mean Y2_se Y3_mean Y3_se
1 0.6666 0.0001 0.1667 0.000002 3.2445 0.0001
2 0.6667 0.0001 0.1667 0.000002 3.2444 0.0001
3 0.6669 0.0001 0.1667 0.000002 3.2442 0.0001
4 0.6667 0.0001 0.1667 0.000001 3.2444 0.0001
5 0.6666 0.0001 0.1667 0.000001 3.2445 0.0001
6 0.6667 0.0002 0.1667 0.000001 3.2444 0.0001
7 0.6670 0.0001 0.1667 0.000001 3.2443 0.0001
8 0.6669 0.0002 0.1667 0.000001 3.2443 0.0001
9 0.6666 0.0002 0.1667 0.000001 3.2445 0.0001

 
 

Table D3- ASGM M5 Input Data 

Scenario Y1 Y2 Y3 
1 (NORM(0.667,0.0589,14)) (0.06+0.21*BETA(4.33,4.20,14)) (2.29+2.04*BETA(7.95,9.04,14))
2 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.18,14)) (2.28+2.20*BETA(8.63,11.1,14))
3 (NORM(0.667,0.0591,14)) (0.06+0.21*BETA(4.31,4.16,14)) (2.30+2.04*BETA(7.86,9.11,14))
4 (NORM(0.667,0.0593,14)) (0.06+0.21*BETA(4.30,4.17,14)) (2.21+2.32*BETA(9.75,12.1,14))
5 (NORM(0.667,0.0597,14)) (0.06+0.21*BETA(4.34,4.22,14)) (2.20+2.57*BETA(10.8,15.8,14))
6 (NORM(0.667,0.0592,14)) (0.06+0.21*BETA(4.32,4.19,14)) (2.14+2.56*BETA(11.6,15.2,14))
7 (NORM(0.667,0.0603,14)) (0.06+0.21*BETA(4.33,4.19,14)) (2.19+2.81*BETA(11.6,19.3,14))
8 (NORM(0.667,0.0601,14)) (0.06+0.21*BETA(4.31,4.17,14)) (2.13+3.20*BETA(13.6,25.4,14))
9 (NORM(0.667,0.0606,14)) (0.06+0.21*BETA(4.33,4.21,14)) (2.16+2.84*BETA(12.2,19.7,14))
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Table D4 - ASGM M6 (Regression) Input Data 

Scenario Y1 Y2 Y3 
1 0.6669 0.1666 3.2447 
2 0.6669 0.1666 3.2447 
3 0.6669 0.1666 3.2447 
4 0.6671 0.1666 3.2447 
5 0.6671 0.1666 3.2447 
6 0.6671 0.1666 3.2447 
7 0.6673 0.1666 3.2447 
8 0.6673 0.1666 3.2447 
9 0.6673 0.1666 3.2447 

 

Table D5 - ASGM M6.1 (Regression w/ CV) Input Data 

Scenario Y1 Y2 Y3 
1 0.6665 0.1662 3.2492 
2 0.6665 0.1667 3.2427 
3 0.6672 0.1671 3.2424 
4 0.6670 0.1657 3.2440 
5 0.6669 0.1667 3.2429 
6 0.6668 0.1671 3.2440 
7 0.6667 0.1669 3.2426 
8 0.6671 0.1670 3.2445 
9 0.6678 0.1655 3.2436 

 

Table D6 - ASGM M7 (ANN-GRNN) Input Data 

Scenario Y1 Y2 Y3 
1 0.6668 0.1666 3.2446 
2 0.6668 0.1667 3.2446 
3 0.6669 0.1667 3.2447 
4 0.6670 0.1666 3.2446 
5 0.6669 0.1666 3.2447 
6 0.6669 0.1666 3.2449 
7 0.6671 0.1666 3.2446 
8 0.6671 0.1666 3.2447 
9 0.6670 0.1666 3.2450 
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Table D7 - ASGM M7.1 (ANN-GRNN w/ CV) Input Data 

Scenario Y1 Y2 Y3 
1 0.6661 0.1664 3.2465 
2 0.6662 0.1667 3.2449 
3 0.6671 0.1669 3.2428 
4 0.6669 0.1663 3.2455 
5 0.6666 0.1666 3.2435 
6 0.6668 0.1668 3.2449 
7 0.6669 0.1666 3.2439 
8 0.6671 0.1667 3.2447 
9 0.6673 0.1661 3.2430 

 

Table D8 - ASGM M8 (MetaSim) Input Data 

Scenario Y1 Y2 Y3 
1 0.6741 0.1699 3.3852 
2 0.6767 0.1699 3.4610 
3 0.6786 0.1698 3.5278 
4 0.6785 0.1694 3.3879 
5 0.6763 0.1693 3.4339 
6 0.6782 0.1693 3.4874 
7 0.6766 0.1691 3.3803 
8 0.6743 0.1690 3.4347 
9 0.6752 0.1690 3.5010 

 
 

Table D9 - ASGM Control Variables 

Control Variables Name 
C1 Remove_MLPRF_Part 
C2 Remove_DMT_Part 
C3 Remove_APSP_Part 
C4 Remove_ANT_Part 
C5 MLPRF_Supply_Truck_Delay 
C6 DMT_Supply_Truck_Delay 
C7 APSP_Supply_Truck_Delay 
C8 ANT_Supply_Truck_Delay 
C9 MLPRF_Supply_Truck_Hold_Time
C10 DMT_Supply_Truck_Hold_Time 
C11 APSP_Supply_Truck_Hold_Time
C12 ANT_Supply_Truck_Hold_Time 
C13 Part_issues_from_Supply 
C14 Install_Part 
C15 Operational_Check 
C16 Signoff_discrepancy 
C17 Document_CA 
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MetaSimASGM.m 
 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
% 
%This code will perform the MetaSim technique based on control variates 
%The random controls are standardized based on Bauer and Wilson 1992 article 
%titled Standardized Routing Variables: A New Class of Control Variates 
clc; 
clear; 
close all; 
format long; 
tic; 
  
directory = 'G:\250GB My Documents\Research\Models\Faas Model\ASGModel\Aggregated 
Inputs\Method 8 - MetaSim\ARENA Model\'; 
ASGM_LowLevel_InputData = load([directory 'ASGM_Scenarios.txt']); 
[r c] = size(ASGM_LowLevel_InputData); 
% ASGM_LL_Inputdata = []; 
data_LowerLevel = []; 
for j = 1:9; %number of scenarios 
    ASGM_LL_Inputdata = []; 
    direct = [directory 'Scenario' num2str(j) '\']; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Load files of potential controls and response; only 1 response at a 
    %time is evaluated in this algorithm 
    %Define Expected Mean (EM) and Expected Stdev (EStd) in mins/days of each 
    %potential controls 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                                                                         % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    data_ASGM_raw = load([direct 'UnscheduledMX_VRT_Output.txt']); 
    [row col] = size(data_ASGM_raw); 
    countrows=1; 
    countcols=1; 
    for l = 7:3:col-1 
        for k = 1:row 
            count(countrows,countcols)= data_ASGM_raw(k,l); %# of instances for random  
            control 
            xbar(countrows,countcols)= data_ASGM_raw(k,l+1); %tally avg from sim 
            s(countrows,countcols)= data_ASGM_raw(k,l+2); %tally stdev from sim 
            countrows = countrows+1; 
        end 
        countrows = 1; 
        countcols = countcols+1; 
    end     
     
    ASGM_LL_Inputdata = [ASGM_LL_Inputdata; 
    ones(length(data_ASGM_raw),1)*ASGM_LowLevel_InputData(j,2:c)]; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %         Sortie Generation Model Potential Controls                      % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % User given distribution is Tria(min=a,mode=m,max=b) 
    % where Part Removal: min = 40 min, mode = 60 min, & max = 70 min. 
    % where Supply Truck Delay: min=0.1 days, mode=0.3 days, & max=0.5 days. 
    % Per Law 2006 Ch. 6, Triangular distribution's corresponding 
    % mean = (min+max+mode)/3 and  var = (a^2+b^2+m^2-ab-am-bm)/18            % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Remove_MLPRF_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part  
    Removal 
    Remove_MLPRF_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60));  
    %expected std dev in in minutes for MLPRF Part Removal 
    Remove_DMT_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part  
    Removal 
    Remove_DMT_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected  
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    std dev in in minutes for DMT Part Removal 
    Remove_APSP_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part  
    Removal 
    Remove_APSP_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected  
    std dev in in minutes for APSP Part Removal 
    Remove_ANT_Part_EM = ((40+60+70)/3)/(60); %expected mean in minutes for MLPRF Part  
    Removal 
    Remove_ANT_Part_EStd = sqrt(((40^2+70^2+60^2-40*70-40*60-70*60)/18)/(60)); %expected  
    std dev in in minutes for ANT Part Removal 
    ST_Delay_MLPRF_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for MLPRF Supply  
    Truck 
    ST_Delay_MLPRF_EStd = sqrt(((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18));  
    %expected mean delay in days for MLPRF Supply Truck 
    ST_Delay_DMT_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for DMT Supply  
    Truck 
    ST_Delay_DMT_EStd = sqrt(((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18)); %expected  
    mean delay in days for DMT Supply Truck 
    ST_Delay_APSP_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for APSP Supply  
    Truck 
    ST_Delay_APSP_EStd = sqrt((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18); %expected  
    mean delay in days for APSP Supply Truck 
    ST_Delay_ANT_EM = ((0.1+0.3+0.5)/3); %expected mean delay in days for ANT Supply  
    Truck 
    ST_Delay_ANT_EStd = sqrt((0.1^2+0.3^2+0.5^2-0.1*0.5-0.1*0.3-0.5*0.3)/18); %expected  
    mean delay in days for ANT Supply Truck 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % User given distribution is Uniform(min=a,max=b) 
    % where Supply Truck Hold: min=0.25 days,& max=0.5 days. 
    % Per Law 2006 Ch. 6, Uniform distribution's corresponding 
    % mean = (min+max)/2 and  var = (b-a)^2/12             % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    ST_Hold_MLPRF_EM = ((0.25+0.5)/2); %expected mean Hold in days for MLPRF Supply Truck 
    ST_Hold_MLPRF_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for MLPRF  
    Supply Truck 
    ST_Hold_DMT_EM = ((0.25+0.5)/2); %expected mean Hold in days for DMT Supply Truck 
    ST_Hold_DMT_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for DMT Supply  
    Truck 
    ST_Hold_APSP_EM = ((0.25+0.5)/2); %expected mean Hold in days for APSP Supply Truck 
    ST_Hold_APSP_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for APSP  
    Supply Truck 
    ST_Hold_ANT_EM = ((0.25+0.5)/2); %expected mean Hold in days for ANT Supply Truck 
    ST_Hold_ANT_EStd = sqrt((0.5-0.25)^2/12); %expected mean Hold in days for ANT Supply  
    Truck 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % User given distribution is Tria(min=a,mode=m,max=b) 
    % where Parts Issues: min = 5 min, mode = 10 min, & max = 15 min. 
    % where Install Part: min = 60 min, mode = 84 min, & max = 120 min. 
    % where Operational Check: min = 15 min, mode = 20 min, & max = 25 min. 
    % where Signoff Discrepancy: min = 5 min, mode = 10 min, & max = 15 min. 
    % where Document CA: min = 5 min, mode = 10 min, & max = 15 min. 
    % Per Law 2006 Ch. 6, Triangular distribution's corresponding 
    % mean = (min+max+mode)/3 and  var = (a^2+b^2+m^2-ab-am-bm)/18            % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Part_issues_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Part Issues 
    Part_issues_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std dev  
    in minutes for Part Issues 
    Install_Part_EM = ((60+84+120)/3)/(60); %expected mean in minutes for Install Part 
    Install_Part_EStd = sqrt(((60^2+84^2+120^2-60*84-60*120-84*120)/18)/(60)); %expected  
    std dev in minutes for Install Part 
    Ops_Check_EM = ((15+20+25)/3)/(60); %expected mean in minutes for Signoff Discrepancy 
    Ops_Check_EStd = sqrt(((15^2+20^2+25^2-15*25-15*20-25*20)/18)/(60)); %expected std  
    dev in minutes for Signoff Discrepancy 
    Signoff_Disc_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Signoff  
    Discrepancy 
    Signoff_Disc_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std  
    dev in minutes for Signoff Discrepancy 
    Doc_CA_EM = ((5+10+15)/3)/(60); %expected mean in minutes for Document CA 
    Doc_CA_EStd = sqrt(((5^2+10^2+15^2-5*10-5*15-10*15)/18)/(60)); %expected std dev in  
    minutes for Document CA 



 222

% Use regular input plus random controls     
%     userMean = [0 0 Remove_MLPRF_Part_EM Remove_DMT_Part_EM Remove_APSP_Part_EM 
Remove_ANT_Part_EM... 
%                 ST_Delay_MLPRF_EM ST_Delay_DMT_EM ST_Delay_APSP_EM ST_Delay_ANT_EM... 
%                 ST_Hold_MLPRF_EM ST_Hold_DMT_EM ST_Hold_APSP_EM ST_Hold_ANT_EM... 
%                 Part_issues_EM Install_Part_EM Ops_Check_EM Signoff_Disc_EM Doc_CA_EM]; 
  
%Only random controls 
    userMean = [Remove_MLPRF_Part_EM Remove_DMT_Part_EM Remove_APSP_Part_EM 
Remove_ANT_Part_EM... 
                ST_Delay_MLPRF_EM ST_Delay_DMT_EM ST_Delay_APSP_EM ST_Delay_ANT_EM... 
                ST_Hold_MLPRF_EM ST_Hold_DMT_EM ST_Hold_APSP_EM ST_Hold_ANT_EM... 
                Part_issues_EM Install_Part_EM Ops_Check_EM Signoff_Disc_EM Doc_CA_EM]; 
     
    variables = ['TAVG';'TStd';'TAVG';'TStd';'TAVG';'TStd'; 
        
'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';'REIn';'Enta';'Ents';        
'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';'DELI';'Enta';'Ents';        
'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents';'HOLI';'Enta';'Ents'; 
        'PIIn';'Enta';'Ents'; 
        'IPIn';'Enta';'Ents'; 
        'OPIn';'Enta';'Ents'; 
        'SDIn';'Enta';'Ents'; 
        'DCIn';'Enta';'Ents'; 
        'NREP']; 
        cnt = 1; 
%Bauer Wilson (1993) control pre-processing 
    for i = 7:3:col-1 
        if strcmp(variables(i,:),'REIn') %vars 1-4 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Remove_MLPRF_Part_EStd).*(data_ASGM_raw(:,i+1)-
Remove_MLPRF_Part_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'DELI') %vars 5-8 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/ST_Delay_MLPRF_EStd).*(data_ASGM_raw(:,i+1)-ST_Delay_MLPRF_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'HOLI') %vars 9-12 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/ST_Hold_MLPRF_EStd).*(data_ASGM_raw(:,i+1)-ST_Hold_MLPRF_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'PIIn') %var 13 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Part_issues_EStd).*(data_ASGM_raw(:,i+1)-Part_issues_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'IPIn') %var 14 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Install_Part_EStd).*(data_ASGM_raw(:,i+1)-Install_Part_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'OPIn') %var 15 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Ops_Check_EStd).*(data_ASGM_raw(:,i+1)-Ops_Check_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'SDIn') %var 16 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Signoff_Disc_EStd).*(data_ASGM_raw(:,i+1)-Signoff_Disc_EM); 
            cnt = cnt + 1; 
        elseif strcmp(variables(i,:),'DCIn') %var 17 
            data_ASGM(:,cnt) = 
(sqrt(data_ASGM_raw(:,i))/Doc_CA_EStd).*(data_ASGM_raw(:,i+1)-Doc_CA_EM); 
            cnt = cnt + 1; 
        end 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                      Start control variates technnique              % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Random variables data 
    data_LowerLevel = [data_ASGM];  
    CONTROLS = data_LowerLevel; 



 223

    RESPONSE = [data_ASGM_raw(:,1) data_ASGM_raw(:,3) data_ASGM_raw(:,5)]; 
    Betas = controlVariatesTechnnique(RESPONSE,CONTROLS); 
    BetaTmp{j} = Betas; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %                      Start Meta Simulation                          % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Count of random variables 
    normparam.userMean = userMean; 
    normparam.count=[count]; 
    normparam.xbar =[ASGM_LL_Inputdata xbar]; 
    normparam.s =[s]; 
    Y = metaSimulation(normparam, Betas, 1); 
    RMSE(j,:) = sqrt((mean(RESPONSE) - Y).^2); 
    MAPD(j,:) = abs((mean(RESPONSE) - Y))./mean(RESPONSE); 
    Target(j,:,:) = RESPONSE; 
    Target_avg(j,:) = mean(RESPONSE); 
    Y_Predict(j,:,:) = Y; 
end 
  
% RMSE 
% MAPD 
toc 
  
mean(Y_Predict,2) 
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controlVariatesTechnnique.m 
 

function Betas = controlVariatesTechnnique(RESPONSE,CONTROLS,alphaLevel) 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
%Usage: 
%     Betas = controlVariatesTechnnique(RESPONSE,CONTROLS); 
%     Betas = controlVariatesTechnnique(RESPONSE,CONTROLS,alphaLevel); 
%Inputs: 
%   RESPONSE [N x T] -- Matrix containing the targets, N is the number of 
%                       replication, T is number of targets 
%   CONTROLS [N x M] -- Random process variables, N is the number of 
%                       replication, M is the number of variables 
%   alphaLevel [1 x 1] -- if alphaLevel is not given, default is 0.05 
%Outputs: 
%   Betas [1 x T] -- is a structure containing the beta weights and 
%                    corresponding indicies. 
%         Betas.b(1,t) - are the beta weights  
%         Betas.in(1,t) - are the indicies associated with the betas (b) 
%                    t [1,2,...T] - is the size of the number of targets T  
%This code will perform Variance reduction technique:  Control Variates 
%Reference: Code modified from the original code by Capt Bednar. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if nargin < 2 
    error('This function requires at least 2 inputs: RESPONSE and CONTROLS') 
end 
if nargin < 3 
    alphaLevel = 0.05; 
end 
X = CONTROLS; 
n = size(X,1); 
Rsqrs =[]; 
Intersection = []; 
ResponseControls = []; 
B2 = []; 
P2 = []; 
Betas = []; 
for i = 1:size(RESPONSE,2)  %Do for the total number of response(each) 
    y = RESPONSE(:,i); 
    [B,SE,PVAL,in,stats,nextstep,history] = ... 
                      stepwisefit(X,y,'penter',alphaLevel,'display','off'); 
    % 2-columns, col 1=ones, col 2=col of 'in' , mu subx is not subtracted 
    % since the data was already pre-processed with mean of col "in" 
    % subtracted 
    Xnew = [ones(n,1),X(:,in)];  
    %QR Orthogonal-triangular decomposition. Eqn 2.2.35 pg 69 Bauer Oper 
    %760 notes 
    [Q,R] = qr(Xnew,0);   
    b = R\(Q'*y);        %same as above 
    Betas(i).b = b; 
    Betas(i).B = B'; 
    Betas(i).in = in; 
    %b=(inv(Xnew'*Xnew))*(Xnew'*RESPONSE) % Alternative calculation for b 
    yhat = Xnew*b;     %New mean for CV C.I. 
    r = y - yhat;      %residual errors 
    dfe = n-rank(R);   %residual degrees of freedom 
    df0 = sum(in);     %dof of controls 
    SStotal = norm(y-mean(y))^2; 
    SSresid = norm(r)^2; 
    mse = SSresid/dfe; %same as sige from below 
    rmse = sqrt(SSresid/dfe); 
    Rinv = R\eye(size(R)); 
    se = rmse * sqrt(sum(Rinv.^2,2)); 
  
    RSS = norm(yhat-mean(y))^2;  % Regression sum of squares. 
    r2 = RSS/SStotal;         % R-square statistic. 
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    r2adj = 1 - (((n-1)/(n-sum(in)))*(1-r2)); 
    %variance of residuals, sigma-squared hat of error 
    sige = (r'*r)/(n-1-sum(in)); 
    Betas(i).mse = mse; 
    %only the actual "in" control column, not all potential controls 
    tmpinv = inv(Xnew'*Xnew);   
    s11 = tmpinv(1,1); 
    R; 
    Rsqrs = [Rsqrs;i, r2, r2adj]; 
    Intersection = [Intersection; i, b(1), se(1), sige, s11, sum(in)]; 
    ResponseControls = [ResponseControls;in]; %list w/c control(s) is in 
  
    B2 = [B2;i,B'];    %bval 
    P2 = [P2;i,PVAL']; %pval 
  
    %Use these values as the parameters for Normal distn, e.g., 
    %Norm(CV_mean,CV_stdev) for CV (Method 3) aggregated inputs 
    CV_mean(i) = b(1);   %intercept b0 
    CV_stderror(i) = sqrt(sige*s11); %std error 
    rsq(i)= r2; 
    Betas(i).r2=r2; 
end; 
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metaSimulation.m 
 

function y = metaSimulation(normparam, Betas, normalizingConstant) 
%Maj June Rodriguez - 08S PhD Dissertation 
%AFIT/ENS 
%Board Members: Dr. J.O. Miller, Dr. K. Bauer, LtCol R. Neher 
% 
%Usage: This code will perform a meta-simulation using the results from the 
% control-variate technique on the collected simulation random variables. 
%Inputs: 
%   normparam [1 x 4] - structure 
%       .count [N x M] -- Random process variables, N is the number of 
%                        replication, M is the number of variables 
%       .xbar [2+N x M] -- a double of the mu parameter for the  
%                              normal distribution 
%       .s [N x M] -- a double of the sigma parameter for the  
%                              normal distribution 
%       .userMean [1 x M] -- a user given mean for the simulation 
%   Betas [1 x T] -- is a structure containing the beta weights,  
%                    corresponding indecies, and mse. 
%         Betas.b  -- the first weight is the bias b0, the following  
%                      weights are the weight corresponding to the  
%                      Betas.in == 1  
%         Betas.B -- are all the beta weights without the bias b0 
%         Betas.in -- are the indices associated with the betas (B) 
%         Betas.mse -- mean squared error 
%   normalizingConstant [1 x 1] -- This value changes the units for the 
%                                  specified model 
%Outputs: 
%   y [N x T] -- predicted y's of the metasim 
% 
%Additional functions needed:  
%   none 
%Reference: New methodology 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This ensures that normrnd starts from the same seed (state) every time the 
%the function is called 
state = 200; 
randn('state', state);  
rand('state', state); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if nargin < 3 
    error('This function requires: data structure, data counts, beta, and normalizing 
constant') 
end 
dataCount = normparam.count; 
T = size(Betas,2); 
normConst = normalizingConstant; 
y = zeros(1,T); 
for t = 1:T 
        y(t) = Betas(1,t).b(1); 
        for in = 1:size(Betas(1,t).in,2) 
            if Betas(1,t).in(in) == 1 
                %Controls already pre-processed, not needed here 
                normDist = normrnd(mean(normparam.xbar(:,in)),... 
                    mean(normparam.s(:,in)./sqrt(normparam.count(:,in)))); 
%                 %Controls not pre-processed, subtract userMean 
%                 normDist = normrnd(mean(normparam.xbar(:,in)),... 
%                     mean(normparam.s(:,in)./sqrt(normparam.count(:,in))))... 
%                     -normparam.userMean(:,in); 
                dist = normDist/normConst; 
                tmp = Betas(1,t).B(in)*(dist); 
                y(t) = y(t) + tmp ; 
            end 
        end 
        y(t) = y(t);%+ Betas(1,t).mse; 
end 
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Appendix E:  Routing Model Data and Code 
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Figure E1 - RM Y1 CDF Comparison (2) 
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Figure E3 - RM Y1 CDF Comparison (2) 
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Figure E5 - RM Y1 CDF Comparison (3) 
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Figure E2 - RM Y1 Dist-Fnc-Diff Plot (1) 
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Figure E4 - RM Y1 Dist-Fnc-Diff Plot (2) 
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Figure E6 - RM Y1 Dist-Fnc-Diff Plot (3) 
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Appendix F:  MetaSim Pseudo-Code 
 

Inputs: 
  normparam [1 x 4] – is a structure 

.count [n x d] -- the number of occurrence of the control variables.  Use the actual 
input value for the input variables and the count of the occurrence of the random 
variate in each replication, n is the number of replication, d is the number of 
control variables  

.xbar [n x d] -- the average value of the controls; a double of the sample mean, x , 
parameter for the   normal distribution 

.s [n x d] -- the standard deviation of the random controls; a double of the sample 
standard deviation, s , parameter for the normal distribution  

.userMean [1 x d] -- a user given mean for the simulation 
  Betas [1 x T] – is a structure containing the beta weights, corresponding indices, and 

mean squared error. 
.b [r x 1] -- the first weight is the bias β0, the following weights are the weight       

corresponding to the Betas.in = = 1 (significant controls) 
      .B [1 x d] -- all the β weights without the bias β0 
      .in [1 x d] -- the indices of 0’s and 1’s associated with Betas.B 
      .mse [1 x 1] -- the mean squared error 
 
Outputs: 
  y [n x T] -- predicted y's of the MetaSim 
 
Algorithm (Pseudo-Code): 
 _______________________________________________________________________ 

T = Number of targets (response); /Establish number of response/ 
y = zeros(1,T); /Initialize MetaSim prediction to equal zero 

for each T/ 
     
for t = 1:T do    /Do for each response/ 
    y(t) = Betas(1,t).b(1);   /Set MetaSim prediction = β0/ 
    for in = 1:size(Betas(1,t).in,2) do /Do for each control/ 
        if Betas(1,t).in(in) = = 1  /Check if control is significant/ 
           normDist = normrnd(mean(normparam.xbar(:,in)),... 

mean(normparam.s(:,in)./sqrt(normparam.count(:,in)))); 
/Randomly generate 

, sNormal x
count

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

/ 

           tmp = Betas(1,t).B(in)*( normDist -normparam.userMean(:,in)); 
/Multiply significant variables with 
corresponding weights/ 
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           y(t) = y(t) + tmp ;   /Update random portion of regression/ 
        end 
end 

y(t) = y(t); /Update entire regression for MetaSim 
prediction/ 

end 
________________________________________________________________________ 
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